軟弱地盤着底式防波堤の設計マニュアル (案)

平成18年1月

国土交通省 九州地方整備局下関港湾空港技術調査事務所財団法人 沿岸技術研究センター

軟弱地盤着底式構造物の開発は、熊本に新港を建設することから始まったものである。熊本港は、熊本市の中心部に程近いところに立地する大規模港湾として計画されたが、有明海の中ほどに位置しており、遠浅かつ、層厚約 40mにもおよぶ超軟弱地盤が建設当初より課題となっていた。このような条件のもと防波堤を建設するに際し、従来型の重力式防波堤では大規模な地盤改良が必要となり、多額の費用と長期の建設工期を要し、港湾整備を進める上で重大な支障となる。そこで、波浪条件が比較的穏やかでかつ水深が浅いということから、地盤改良を行わず軟弱地盤上に堤体を直接設置する軟弱地盤着底式防波堤が開発された。

熊本港において、軟弱地盤着底式防波堤は、昭和62年度に工事着工し、現在まで10余年、約2000mの施工を行っている。軟弱地盤着底式防波堤の設計法については、平成3年にそれまでの試験研究成果をとりまとめる形で「軟弱地盤着底式防波堤設計指針(案)」(運輸省港湾局)が策定され、平成6年に発刊された「新形式防波堤技術マニュアル」(沿岸開発技術研究センター)のなかで軟弱地盤着底式防波堤の設計法が示された。近年、この軟弱地盤着底式防波堤の施工水深の大水深化、設計波の増大などにより、非常に大きな堤体幅が必要になることから、水平抵抗、鉛直支持力を中心に設計を見直すこととした。

本マニュアルは、平成11年度から取り組んできた軟着堤の高度化に関する検討成果を踏まえ、 平成14年度に実施された現地実証試験のデータ解析を行い、「軟弱地盤着底式防波堤設計指針 (案)」や「新形式防波堤技術マニュアル」に示された従来設計法の見直しを検討し、新しい設計 方法の取りまとめを

行ったものである。

なお、新しい設計法の策定にあたっては、「軟着堤の高度化に関する検討委員会 (H11~H14)」 (国土交通省)の学識経験者等による指導・助言を受けながら実施した。

最後に本マニュアルをまとめるにあたり、熱心にご討議・検討いただきました「軟着堤の高度 化に関する検討委員会」のみなさまに心よりの御礼を申し上げます。

平成18年1月

国土交通省九州地方整備局 下関港湾空港技術調査事務所長

軟着堤の高度化に関する検討調査委員会

構成メンバー(敬称略)

委員長 善 功企 九州大学大学院 工学研究院 建設システム工学専攻 教授 委 員 大谷 順 熊本大学 工学部 環境システム工学科 教授 郷池 喜昭 (独)港湾空港技術研究所 地盤・構造部 基礎工研究室長 山本 修司 国土交通省 国土技術政策総合研究所 港湾研究部長 横田 弘 (独)港湾空港技術研究所 地盤・構造部 構造強度研究室長 アドバイザー 澤口 正俊 筑波大学名誉教授 ア迫 健一郎*(独)港湾空港技術研究所 海洋・水工部 耐波研究室長 (以上、委員は50音順)

平成14年2月におけるメンバー *平成16年3月の第2回委員会のみ

- 目 次 -

1.概要	 1
1.1 はじめに	 1
1.2 本マニュアルの適用範囲	 2
1.3 用語の定義	 2
2 . 基本設計	 4
2.1 一般	
2.2 基本設計の手順	
2.3 設計条件の設定	
2.4 基本断面の設定	 -
2.4.1 構造条件の設定	 5
2.4.3 堤体部材厚さの設定	
2.5 外力計算	
2.5.1 一般	
2.5.2 波力	
2.5.4 地震時慣性力・動水圧	
2.5.5 考慮すべき荷重	
	 _
2.7 先頭函としての検討	
2.7.1 一般	
2.7.2 外力の考え方	
2.7.3 堤体水平抵抗の考え方	
2.7.4 堤体鉛直支持力の考え方	 37

3.細部設計	39
3.1 一般	39
3.2 細部設計の手順	40
3.3 設計条件の設定	41
3.3.1 細部設計に用いる設計波	41
3.3.2 材料	41
3.3.3 荷重係数と荷重の組み合わせ	42
3.3.4 許容ひび割れ幅	42
3.3.5 鉄筋かぶりの考え方	43
3.3.6 各限界状態の考慮すべき荷重	43
3.4 設計荷重の算定	44
3.5 断面力の算定	45
3.6 部材の検討	50
4 . 構造細目	51
4.1 コンクリート部材	51
4.2 杭頭部	51
5.設計・施工上の留意点	52
5.1 沈下に対する考え方	52
5.2 基本設計における比較検討の留意点	58
5.3 洗掘防止対策	58
5.4 目地部	58
参考資料	
1 . 基本設計の骨格となった実証試験結果の概	摄要 1
2 . 基本設計実施のための参考事例計算	30
3 . 細部設計実施のための参考事例計算	60
4.施工事例	265

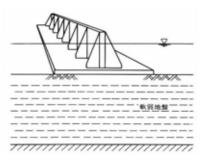
1. 概要

1.1 はじめに

- (1) 軟弱地盤着底式防波堤(以下、「軟着堤」と略す)は、波高が小さく軟弱地盤である海域を対象として開発された防波堤である。本構造形式を適用する場合には、地盤改良はしないことを前提とする。
- (2) 軟着堤は、水平荷重に対しては堤体底面と地盤間に生じる付着力や杭の軸直角方向の抵抗力で、 鉛直荷重に対しては底版とフーチングで抵抗する構造である。
- (3) 軟着堤の特徴は以下のとおりである。

堤体質量が軽減できること。

杭の軸直角方向の抵抗力を期待する構造形式の場合には、堤体の変位を設計の前提とすること。


の特徴は、軟弱な地盤が永続作用で支持力破壊しないようにするためと、地盤の圧密による沈 下を極力抑えるための重要な要件である。

(4) 軟着堤の構造形式については、「平型」と「くし型」に大別される。最初、水平外力に対して、平らな堤体底面と地盤間に生じる付着力で抵抗する構造形式が考案され、堤体底面がフラットであるため「平型」(図-1(a)、(d)参照)と呼ばれた。その後、「平型」では水平抵抗力が不足する場合に、フーチングから短い杭(図-1(b)、(e)参照)を打設し、杭の軸直角方向の抵抗力で水平外力に抵抗する構造形式が考案され、地盤に串をさすような形状から「くし型」と呼ばれた。

熊本港において、当初から施工された構造形式は「くし型」(短杭式)であるが、本マニュアルに示された設計法による基本断面は、「くし型」(短杭式)に比べて杭の根入れは長くなるものの、杭断面が小さくでき、堤体幅も小さくなり、建設工費縮減が可能となった。この構造形式を「くし型」(長杭式)(図 - 1(c)、(f)参照)と呼んでいる。

(5) 軟着堤の上部構造については、多くのバリエーションが考えられるが、反射波・伝達波等の防波 堤として要求される機能を考慮し、適切に選定しなければならない。

熊本港において検討された代表的な上部構造には、「逆T型」(図-1(a)~(c)参照)や「逆型」(図-1(d)~(f)参照)があり、実際に施工された上部構造は「逆型」である。

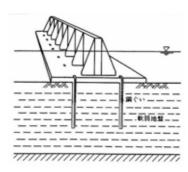


図 - 1(a) 平型・逆T型

図 - 1(b) くし型(短杭式)・逆T型 図 - 1(c) くし型(長杭式)・逆T型

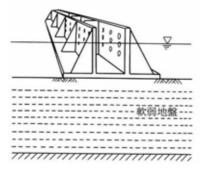


図 - 1(d) 平型・逆 型

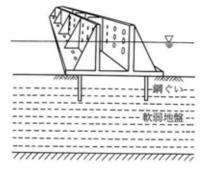


図 - 1(e) くし型(短杭式)・逆 型 図 - 1(f) くし型(長杭式)・逆 型

1.2 本マニュアルの適用範囲

- (1) 本マニュアルは、港湾施設として用いられる軟着堤の設計に適用する。なお、軟着堤の定義については、本マニュアルの1.1に示す。
- (2) 本マニュアルに示していない事項については次の基準等による。

港湾の施設の技術上の基準・同解説(日本港湾協会)(以下、技術基準と略す) コンクリート標準示方書(土木学会)(以下、コンクリート示方書と略す)

〔解 説〕

- (1) 本マニュアルにおいては、施工実績のある軟着堤の構造形式の「くし型」について記述する。
- (2) 本マニュアルでは、基本設計については水平抵抗および鉛直支持力に関する安定性の照査を、 細部設計については安全性として終局限界状態および疲労限界状態の検討を、また、使用性とし て使用限界状態の検討を行っている。
- (3) 本マニュアルにおいては、〔解 説〕には一般的に準用できる項目を記述し、〔参 考〕には熊本港における事例を記述する。

[参考]

本マニュアルに示す設計法は、「軟弱地盤着底式防波堤設計指針(案)」(運輸省港湾局、1991) や「新形式防波堤技術マニュアル」(沿岸開発技術研究センター、平成6年)に示された設計法(以下、従来設計法と略す)で設計された既設軟着堤の改良にも適用可能である。

1.3 用語の定義

本マニュアルにおいては、用語を次のように定義する。

- 軟 着 堤:軟弱地盤着底式防波堤の略称であり、地盤改良をしない軟弱地盤上に重量の軽い 堤体を直接設置し、粘性土地盤の表面と堤体底面の付着力や杭の軸直角方向の抵抗 力で抵抗することを基本的思想とした防波堤である。
- 平 型 :最初に考案された軟着堤の構造形式の名称であり、この構造形式は、堤体底面が フラットであるため「平型」と呼ばれている。「平型」は、水平外力に対して、平 らな堤体底面と地盤表面間に生じる付着力で抵抗する。
- く し 型: 軟着堤の構造形式の名称であり、この構造形式は、「平型」では水平抵抗力が不足 する場合に、底版から短い杭または長い杭を打設し、杭の軸直角方向の抵抗力で水 平外力に抵抗するものであり、地盤に串をさすような形状から「くし型」と呼ばれ ている。
- 逆 T 型:熊本港で検討された代表的な軟着堤の上部構造の名称である。この構造形式は、 アルファベットのTを逆にしたような断面形状から「逆T型」と呼ばれている。
- 逆型:熊本港で検討された代表的な軟着堤の上部構造の名称である。この構造形式は、 ギリシャ文字のを逆にしたような断面形状から「逆型」と呼ばれている。
- 従来設計法:「軟弱地盤着底式防波堤設計指針(案)」(運輸省港湾局、1991)や「新形式防波堤技術マニュアル」(沿岸開発技術研究センター、平成6年)に示された軟着堤の設計法である。
- 新設計法 : 本マニュアルに示す軟着堤の設計法である。

杭頭固定度:一般的に、杭は杭頭固定と杭頭自由に大別して考えられる。杭頭固定とは、荷重が作用したとき、杭頭たわみ角が0の状態であり、杭頭に曲げモーメントの最大値が生じる条件である。杭頭自由とは、杭頭たわみ角が拘束されていない状態であり、荷重が作用したとき、杭頭たわみ角が最大となり、杭頭モーメントが0となる条件である。実際の杭は、杭頭たわみ角や杭頭モーメントが杭頭固定と杭頭自由の中間程度の値を示すため、本マニュアルでは、中間的な杭頭拘束条件を表すことができるパラメータとして杭頭固定度を定義している。なお、杭頭固定度については、杭頭固定の場合 $R_{fix}=1.0$ 、杭頭自由の場合 $R_{fix}=0$ と設定し、実際に杭に生じる杭頭モーメントと杭頭固定のときの杭頭モーメントとの比で表す。

繰返し荷重:最高波高に次ぐ大きさの波高が繰り返し作用したときの安定性を検討するときの 荷重である。本マニュアルでは、地盤反力係数の低下を考慮して、繰り返し荷重に 対する安定照査を行っている。

部材名称 : 本マニュアルに示す部材名称は、図 - 2 に示すとおりとする。なお、図 - 2 に示す 構造図は、熊本港で検討された軟着堤の代表的な上部構造である「逆T型」と「逆型」である。

先頭函 : 先頭函とはある一定の期間だけ堤頭函になる堤体のことである。ある一定の期間 が過ぎると標準函になる。

標準函:標準函とは先頭函以外の堤幹部となる堤体のことである。

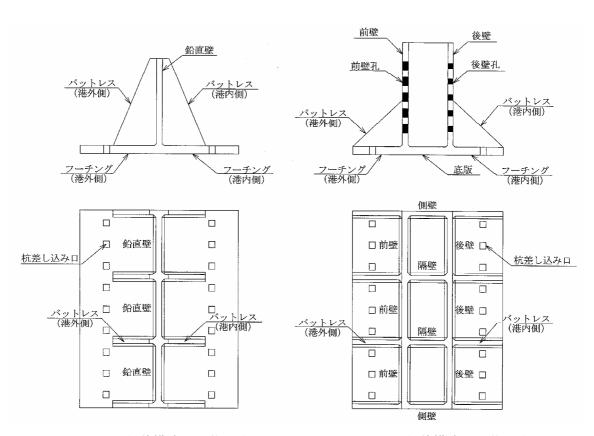


図 - 2(a) 堤体構造図(逆T型)

図 - 2(b) 堤体構造図(逆型)

2.基本設計

2.1 一般

軟着堤の設計にあたっては、自然条件、施工条件、経済性等を考慮して適切な構造形式を選定 するものとする。

〔解 説〕

軟着堤の基本設計は、水平抵抗および鉛直支持力に関する安定性の照査を行うことを標準とする。

2.2 基本設計の手順

軟着堤の基本設計にあたっては、**技術基準(平成 11 年制定) 第7編第2章 防波堤** 及び**第3章 その他の形式の防波堤**による。

〔解 説〕

軟着堤の基本設計手順は、一般に図 - 3 に示す手順で行うのがよい。

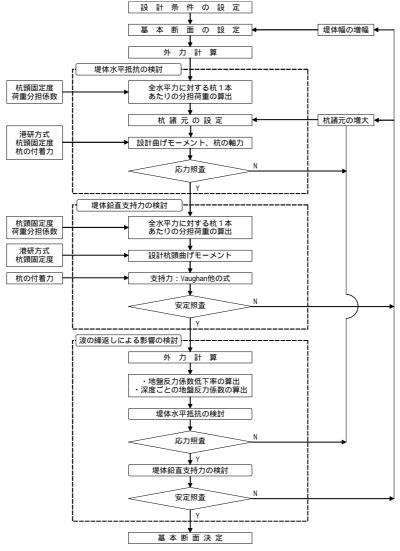


図 - 3 基本設計フロー

2.3 設計条件の設定

軟着堤の設計条件については、自然条件、利用状況、施工条件、水質環境等を考慮して適切に 定めるものとする。

〔解 説〕

- (1) 設計条件については、**技術基準(平成 11 年制定) 第7編2.3 設計条件の決定** の規定に 準じる。
- (2) 軟着堤の基本設計に用いる主な設計条件は以下のとおりである。
 - 1) 設計潮位 (**技術基準 (平成 11 年制定) 第2編 第6章**)
 - 2) 設計波 (**技術基準 (平成 11 年制定) 第 2 編 第 4 章**)
 - 3) 地盤条件、地盤反力係数 (技術基準 (平成 11 年制定) 第2編 第11章、第5編 第4章)
 - 4) 材料(コンクリート、鋼材)など(技術基準(平成11年制定) 第3編 第2章、第3章)
 - 5) 単位体積重量 (**技術基準 (平成 11 年制定) 第 2 編 第 1 5 章**)
 - 6) 地震力 (**技術基準 (平成 11 年制定) 第2編 第12章**)
- (3) 軟着堤の設計では、繰返し荷重による地盤反力係数の低下を考慮する。(2.6.6 参照)

2.4 基本断面の設定

2.4.1 構造条件の設定

軟着堤の上部構造は、さまざまな構造形式が考えられるが、反射波、伝達波等に対する機能性 を考慮して適切に定めるものとする。

[解 説]

- (1) 軟着堤の安定性に係る構造条件については、**技術基準(平成 11 年制定) 第7編 2.5 基本 断面の設定** の規定に準じる。
- (2) 上部構造を透過型とする場合、前壁開口率と後壁開口率および遊水室幅等については、利用条件を満足するように水理模型実験等を行って適切に定めることが望ましい。
- (3) 軟着堤の上部構造は波力を受ける鉛直壁と、これを支える底版、フーチングおよびバットレスで構成されている。堤体幅については、堤体鉛直支持力の安定性を満足するように設定する。

2.4.2 軟着堤の天端高の設定

軟着堤の天端高は、港湾施設の利用に支障がない静穏度を確保するよう適切に設定するものと する。

〔解 説〕

軟着堤の天端高の設定は、**技術基準(平成11年制定) 第7編2.5 基本断面の設定** の規 定に準じる。

2.4.3 堤体部材厚さの設定

軟着堤の部材厚さは、基本設計の段階で適切に設定するものとする。

〔解 説〕

軟着堤の基本断面については、自重増加に伴う堤体鉛直支持力の不足による影響が大きいため、 部材厚を変更した場合、再度安定性の照査が必要となる。そのため、細部設計において部材厚の 変更が生じないように、基本設計の段階で配筋可能な部材厚を適切に設定する必要がある。特に、 底版、フーチングについては、杭頭モーメントや杭の軸力等に対して、部材厚を満足しているか 確認して検定する必要がある。

[参考]

(1) 熊本港では、以下に示す部材寸法で設計を行った。そのときの底版、フーチングについては、 基本設計の段階で杭頭モーメント、杭の軸力等に対して、部材厚を満足しているか確認している。 なお、部材の位置に関しては、図 - 4 の軟着堤設計例に示す。

前	壁		0.45m
後	壁		0.40m
側	壁、隔	壁	0.30m
バッ	ットレス		0.35m
	_		o oo (₩±±=

底版 0.60m(基本設計の段階で部材の有効高さのチェックが必要) フーチング 0.60m(基本設計の段階で部材の有効高さのチェックが必要)

HD=4.5m 3, 75 0, 45 3, 00 0, 40 3, 80 T1/3=5.5sec バットレス 側壁 バットレス β=0.0° 前壁 OM 港外側 +6.2m \(完成時+6.10m) 23 港内側 口前壁 後壁 🗆 前壁孔 隔壁 ヾッ[]・レス バッ Eレス ιχν 0/ (港内側) <u>バットレス</u> (港外側) 15.0 □前壁 後壁 🗌 バッゴレス バットレス ιών 底版 <u>フーチン</u>(港外側) フーチング (港内側) 53 後壁 🗌 □ 前壁 W₂ τ f=1.97+1.37Z(Z0=DL±0.0m) (kN/m2) バットレス H型鋼 SHK490M 492×465×15×20 L=20.5m

図 - 4 軟着堤設計例

- (2) 基本設計の段階において、熊本港で実績のある典型的な杭の配置モデルを対象に、簡便的に配筋可能な部材厚を設定するためのモーメント計算図表(表 1、2)を作成した。
 - 1) モーメント計算図表の適用範囲を以下に示す。
 - a) フーチングの Y 方向 (法線平行方向)の距離については、施工実績および群杭にならない範囲を考慮して $L_{r=4.0}$ ~ 5.0m 程度と考えた。
 - b) 杭位置については、施工実績よりY方向(法線平行方向)に3本を概ね等間隔とした。
 - c) 杭頭モーメントの影響範囲については、図 5 に示す版解析結果より Y 方向(法線平行方向) の曲げモーメントの影響が杭中心位置より $0.3 L_7$ の範囲となるため、計算図表作成時のモデルは、図 6 に示すように X 方向(法線直角方向)のスパン長を $B_7 = L_7 \times 0.6$ とした。

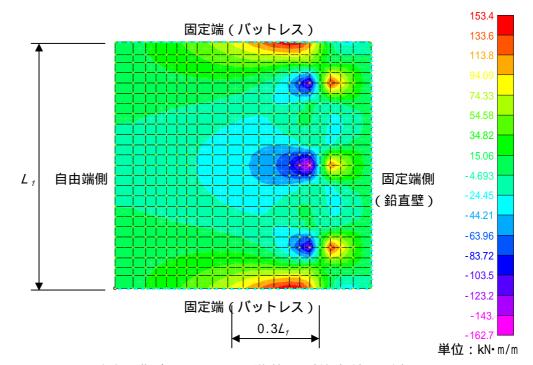


図 - 5 Y方向の曲げモーメントの影響範囲(版解析結果の例)

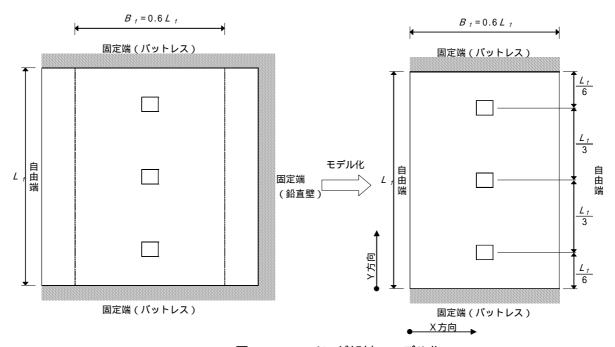
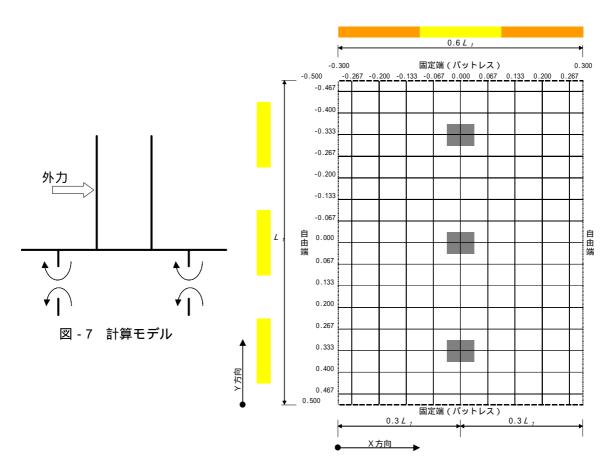


図 - 6 フーチング部材のモデル化

- 2) モーメント計算図表については、X方向、Y方向を定め、杭頭モーメントおよび杭の軸力によるフーチングの曲げモーメントを格子桁解析により算出した。なお、このモーメント計算図表を用いて部材検討を行うときは、1割程度の余裕をとった。それは、計算図表を作成した解析モデルは左右対称であり、杭頭モーメントは杭位置で均等に配分されるのに対して、実際の解析モデルは、左右非対称であることと片側が固定端となる影響により杭頭モーメントは杭位置で均等に配分されないため、そのモーメントの偏差分を考慮したものである。
 - a) 杭頭モーメントによるフーチングの曲げモーメントについては、表 1 に示すモーメント計算図表を用いて(式 1)より算出する。モーメント計算図表の算定モデルを図 7 に、モーメント計算図表解析モデルを図 8 に示す。


$$M_x = C_x M_k / L_1$$
 (式 - 1)

ここに、 M_x M_y : 求める点でのX方向、Y方向の曲げモーメント (kN·m/m)

 C_x C_y : 求める点でのX方向、Y方向の曲げモーメント係数

 M_k : 杭頭モーメント (kN·m/本)

L₁: Y方向のスパン長 (m)

(塗りつぶし部分は、杭位置を示す) 図 - 8 モーメント計算図表解析モデル

表 - 1(a) 法線直角方向荷重に起因する単杭杭頭反力モーメントによる X 方向曲げモーメント計算図表

	-0.300	-0.267	-0.200	-0.133	-0.067	0.0		0.067	0.133	0.200	0.267	0.300
						Right	Left					
-0.500												
-0.467	0.0000	0.0300	0.0150	-0.0450	-0.0900	-0.2250	0.2250	0.0900	0.0450	-0.0150	-0.0300	0.0000
-0.400	0.0000	0.0425	0.0500	-0.1225	-0.6950	-2.3400	2.3400	0.6950	0.1225	-0.0500	-0.0425	0.0000
-0.333	0.0000	0.0350	0.0025	-0.2800	-1.1075	-2.4000	2.4000	1.1075	0.2800	-0.0025	-0.0350	0.0000
-0.267	0.0000	0.0050	-0.1400	-0.4450	-0.9600	-2.2750	2.2750	0.9600	0.4450	0.1400	-0.0050	0.0000
-0.200	0.0000	-0.0275	-0.2850	-0.6425	-0.8650	-0.2100	0.2100	0.8650	0.6425	0.2850	0.0275	0.0000
-0.133	0.0000	-0.0450	-0.3400	-0.7000	-0.9025	-0.2000	0.2000	0.9025	0.7000	0.3400	0.0450	0.0000
-0.067	0.0000	-0.0450	-0.3050	-0.6300	-1.0850	-2.2350	2.2350	1.0850	0.6300	0.3050	0.0450	0.0000
0.000	0.0000	-0.0425	-0.2725	-0.6150	-1.3475	-2.3250	2.3250	1.3475	0.6150	0.2725	0.0425	0.0000
0.067	0.0000	-0.0450	-0.3050	-0.6300	-1.0850	-2.2350	2.2350	1.0850	0.6300	0.3050	0.0450	0.0000
0.133	0.0000	-0.0450	-0.3400	-0.7000	-0.9025	-0.2000	0.2000	0.9025	0.7000	0.3400	0.0450	0.0000
0.200	0.0000	-0.0275	-0.2850	-0.6425	-0.8650	-0.2100	0.2100	0.8650	0.6425	0.2850	0.0275	0.0000
0.267	0.0000	0.0050	-0.1400	-0.4450	-0.9600	-2.2750	2.2750	0.9600	0.4450	0.1400	-0.0050	0.0000
0.333	0.0000	0.0350	0.0025	-0.2800	-1.1075	-2.4000	2.4000	1.1075	0.2800	-0.0025	-0.0350	0.0000
0.400	0.0000	0.0425	0.0500	-0.1225	-0.6950	-2.3400	2.3400	0.6950	0.1225	-0.0500	-0.0425	0.0000
0.467	0.0000	0.0300	0.0150	-0.0450	-0.0900	-0.2250	0.2250	0.0900	0.0450	-0.0150	-0.0300	0.0000
0.500						•			•			

表 - 1(b) 法線直角方向荷重に起因する単杭杭頭反力モーメントによる Y 方向曲げモーメント計算図表

_	-0.300	-0.267	-0.200	-0.133	-0.067	0.000	0.067	0.133	0.200	0.267	0.300
-0.500		2.3100	2.1300	2.0850	1.4850	0.0000	-1.4850	-2.0850	-2.1300	-2.3100	
-0.467		1.6725	1.4575	1.2875	1.0400	0.0000	-1.0400	-1.2875	-1.4575	-1.6725	
-0.400		0.9775	0.7500	0.4600	0.0000	0.0000	0.0000	-0.4600	-0.7500	-0.9775	
-0.333		0.2900	0.1100	-0.1450	-0.2925	0.0000	0.2925	0.1450	-0.1100	-0.2900	
-0.267		-0.2125	-0.2275	-0.2500	-0.3775	0.0000	0.3775	0.2500	0.2275	0.2125	
-0.200		-0.5550	-0.4050	-0.1525	0.2450	0.0000	-0.2450	0.1525	0.4050	0.5550	
-0.133		-0.7700	-0.5550	-0.2450	0.2025	0.0000	-0.2025	0.2450	0.5550	0.7700	
-0.067		-0.8925	-0.7025	-0.5450	-0.5150	0.0000	0.5150	0.5450	0.7025	0.8925	
0.000		-0.9300	-0.7800	-0.7150	-0.5600	0.0000	0.5600	0.7150	0.7800	0.9300	
0.067		-0.8925	-0.7025	-0.5450	-0.5150	0.0000	0.5150	0.5450	0.7025	0.8925	
0.133		-0.7700	-0.5550	-0.2450	0.2025	0.0000	-0.2025	0.2450	0.5550	0.7700	
0.200		-0.5550	-0.4050	-0.1525	0.2450	0.0000	-0.2450	0.1525	0.4050	0.5550	
0.267		-0.2125	-0.2275	-0.2500	-0.3775	0.0000	0.3775	0.2500	0.2275	0.2125	
0.333		0.2900	0.1100	-0.1450	-0.2925	0.0000	0.2925	0.1450	-0.1100	-0.2900	
0.400	·	0.9775	0.7500	0.4600	0.0000	0.0000	0.0000	-0.4600	-0.7500	-0.9775	
0.467	·	1.6725	1.4575	1.2875	1.0400	0.0000	-1.0400	-1.2875	-1.4575	-1.6725	
0.500	•	2.3100	2.1300	2.0850	1.4850	0.0000	-1.4850	-2.0850	-2.1300	-2.3100	

b) 杭の軸力(下向き)によるフーチングの曲げモーメントについては、表 - 2 の計算図表を用いて(式 - 2)より算出する。モーメント計算図表の算定モデルを図 - 9 に、モーメント計算図表解析モデルを図 - 10 に示す。

$$M_x = C_x N_k$$
 (式 - 2)

ここに、 M_{x} M_{y} : 求める点でのX方向、Y方向の曲げモーメント $(kN\cdot m/m)$

 C_x C_y : 求める点でのX方向、Y方向の曲げモーメント係数

N_k: 杭の軸力(kN/本)

杭の軸力(上向き)によるフーチングの曲げモーメントについては、表 - 2 のモーメント計 算図表(下向き)に - 1 を乗じた値を用いて(式 - 2)により算出する。

(塗りつぶし部分は、杭位置を示す) 図 - 10 モーメント計算図表解析モデル

表 - 2(a) 単位杭軸力による X 方向曲げモーメント計算図表

	-0.300	-0.267	-0.200	-0.133	-0.067	0.000	0.067	0.133	0.200	0.267	0.300
-0.500											
-0.467	0.0000	0.0060	0.0000	-0.0020	0.0040	0.0080	0.0040	-0.0020	0.0000	0.0060	0.0000
-0.400	0.0000	0.0020	-0.0047	-0.0067	0.0180	0.1147	0.0180	-0.0067	-0.0047	0.0020	0.0000
-0.333	0.0000	-0.0013	-0.0053	0.0007	0.0433	0.1640	0.0433	0.0007	-0.0053	-0.0013	0.0000
-0.267	0.0000	-0.0027	0.0000	0.0200	0.0660	0.1707	0.0660	0.0200	0.0000	-0.0027	0.0000
-0.200	0.0000	-0.0027	0.0073	0.0407	0.0960	0.1333	0.0960	0.0407	0.0073	-0.0027	0.0000
-0.133	0.0000	-0.0027	0.0107	0.0473	0.1080	0.1467	0.1080	0.0473	0.0107	-0.0027	0.0000
-0.067	0.0000	-0.0033	0.0087	0.0407	0.1020	0.2120	0.1020	0.0407	0.0087	-0.0033	0.0000
0.000	0.0000	-0.0040	0.0067	0.0360	0.1040	0.2347	0.1040	0.0360	0.0067	-0.0040	0.0000
0.067	0.0000	-0.0033	0.0087	0.0407	0.1020	0.2120	0.1020	0.0407	0.0087	-0.0033	0.0000
0.133	0.0000	-0.0027	0.0107	0.0473	0.1080	0.1467	0.1080	0.0473	0.0107	-0.0027	0.0000
0.200	0.0000	-0.0027	0.0073	0.0407	0.0960	0.1333	0.0960	0.0407	0.0073	-0.0027	0.0000
0.267	0.0000	-0.0027	0.0000	0.0200	0.0660	0.1707	0.0660	0.0200	0.0000	-0.0027	0.0000
0.333	0.0000	-0.0013	-0.0053	0.0007	0.0433	0.1640	0.0433	0.0007	-0.0053	-0.0013	0.0000
0.400	0.0000	0.0020	-0.0047	-0.0067	0.0180	0.1147	0.0180	-0.0067	-0.0047	0.0020	0.0000
0.467	0.0000	0.0060	0.0000	-0.0020	0.0040	0.0080	0.0040	-0.0020	0.0000	0.0060	0.0000
0.500	_			_	_	_	_		_	_	

表 - 2(b) 単位杭軸力による Y 方向曲げモーメント計算図表

_	-0.300	-0.267	-0.200	-0.133	-0.067	0.000	0.067	0.133	0.200	0.267	0.300
-0.500		-0.2840	-0.3747	-0.4667	-0.5400	-0.5720	-0.5400	-0.4667	-0.3747	-0.2840	
-0.467		-0.2580	-0.3133	-0.3720	-0.4233	-0.4440	-0.4233	-0.3720	-0.3133	-0.2580	
-0.400		-0.1800	-0.1840	-0.1873	-0.2013	-0.2027	-0.2013	-0.1873	-0.1840	-0.1800	
-0.333		-0.0820	-0.0660	-0.0300	0.0407	0.0640	0.0407	-0.0300	-0.0660	-0.0820	
-0.267		0.0100	0.0267	0.0413	0.0393	0.0427	0.0393	0.0413	0.0267	0.0100	
-0.200		0.0900	0.0960	0.0920	0.0793	0.0720	0.0793	0.0920	0.0960	0.0900	
-0.133		0.1460	0.1513	0.1467	0.1327	0.1260	0.1327	0.1467	0.1513	0.1460	
-0.067		0.1820	0.1960	0.2073	0.2027	0.2040	0.2027	0.2073	0.1960	0.1820	
0.000		0.1920	0.2107	0.2480	0.3173	0.3413	0.3173	0.2480	0.2107	0.1920	
0.067		0.1820	0.1960	0.2073	0.2027	0.2040	0.2027	0.2073	0.1960	0.1820	
0.133		0.1460	0.1513	0.1467	0.1327	0.1260	0.1327	0.1467	0.1513	0.1460	
0.200		0.0900	0.0960	0.0920	0.0793	0.0720	0.0793	0.0920	0.0960	0.0900	
0.267		0.0100	0.0267	0.0413	0.0393	0.0427	0.0393	0.0413	0.0267	0.0100	
0.333		-0.0820	-0.0660	-0.0300	0.0407	0.0640	0.0407	-0.0300	-0.0660	-0.0820	
0.400		-0.1800	-0.1840	-0.1873	-0.2013	-0.2027	-0.2013	-0.1873	-0.1840	-0.1800	
0.467		-0.2580	-0.3133	-0.3720	-0.4233	-0.4440	-0.4233	-0.3720	-0.3133	-0.2580	
0.500		-0.2840	-0.3747	-0.4667	-0.5400	-0.5720	-0.5400	-0.4667	-0.3747	-0.2840	

2.5 外力計算

2.5.1 一 般

外力は、適切に算定するものとする。

〔解 説〕

外力計算は、技術基準(平成11年制定) 第7編2.6 外力計算 の規定に準じる。

2.5.2 波 力

波力については、軟着堤の水理特性、構造等に応じて適切な算定法で行うものとする。

〔解 説〕

直立壁に作用する波力については、**技術基準(平成11年制定) 第2編第5章 波力**により算出することができる。スリットを有する直立壁に作用する波力については、必要に応じて水理模型実験等を行い適切に求めることが望ましい。

[参考]

- (1) 熊本港で検討された代表的な上部構造である「逆T型」に作用する水平波力については、水理模型実験の結果により、合田式の適合性が高いことが確認された。また、底版上面における波圧分布は前端ほど小さくなる(場合によっては負になる)ため、底版に作用する鉛直波力は台形分布で与えるものとした(図 11(a)参照)。
- (2) 熊本港で検討された代表的な上部構造である「逆型」に作用する水平波力についても、「逆工型」と同様に合田式で推定可能である(図-11(b)参照)。ただし、遊水室幅、前・後壁の開口率等の影響を受けるため、これらの条件を決定した上で、前壁・後壁ごとに合田波圧に対する低減率を定めた。

鉛直波力が最大となるのは、水平波力が最大となるときと時間差があり、その現象は複雑であり、前壁、後壁に作用する水平波圧を一義的に与えることは困難である。このため、鉛直波力最大時の水平波力については、水理模型実験結果の最大値を採用し、合田波圧の 倍という形で表現する。鉛直波力最大時の鉛直波力については、港外側フーチングと港内側フーチング上面に作用する波圧分布を、それぞれのフーチング幅の関数として与えることは難しい。このため、実測波圧分布を参考とし、前端を0とした三角形分布で与えた。

- (3) 揚圧力については、昭和61年~昭和63年に実施された長期実証試験の結果より、軟着堤の設計(従来設計法)では、洗掘防止マットを施工し、揚圧力が作用しにくい構造とすることを前提条件とし、揚圧力は考慮されていない。長期実証試験の結果をまとめた報告書¹⁾には、以下の記述があった。
 - 「現地実証試験(長期実証試験)の結果、揚圧力はほとんどないものと判断した。しかし、 揚圧力も発生することも考えられるため、洗掘防止を兼ねて洗掘防止マットを施工し、揚 圧力が作用しにくい構造とする。」

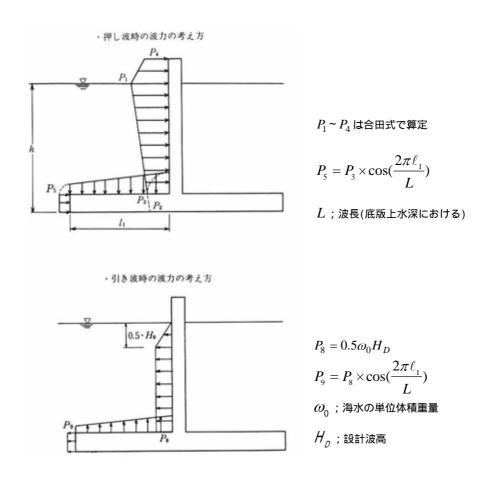
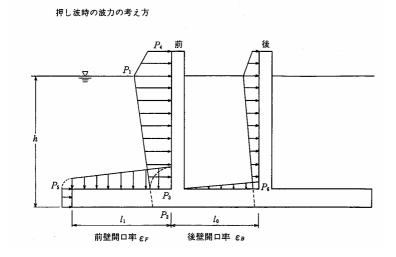



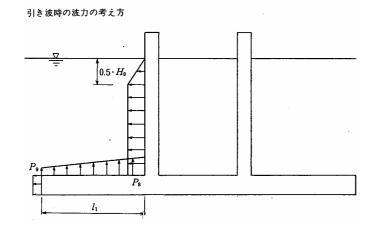
図 - 11(a) 「逆T型」の波力分布

前壁;合田波圧 \times (1 – ε_{F})

後壁;合田波圧× a_O × (1 – ε_B)

港外側フーチング;逆T型と同じ考え方

底版;左図のような三角形分布を仮定


P₁~ P₄ は合田式で算定

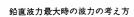
$$P_5 = P_3 \times \cos\left(\frac{2\pi\ell_1}{L}\right)$$

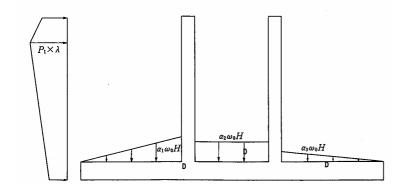
L;波長(底版上水深における)

$$P_6 = \mathcal{A}_0 \times P_3$$

ただし、 a_o は実験結果より決まる定数であり、0.15 を採用した事例がある。

後 壁;作用しない


港外側フーチング;逆T型と同じ考え方


$$P_{\rm g} = 0.5\omega_{\rm O}H_{\rm D}$$

$$P_9 = P_8 \times \cos\left(\frac{2\pi\ell_1}{I}\right)$$

 ω_0 ; 海水の単位体積重量

H。; 設計波高

全水平波力;合田波圧 $imes\lambda$

底 版;左図のような波圧分布を仮定 フーチング;左図のような波圧分布を仮定 ただし、 λ 、 $a_{\rm l}$ 、 a_2 、 a_3 は実験結果により

定まる定数

熊本港の場合 $\lambda=0.6$

$$a_1 = 0.8$$

$$a_2 = 0.65$$

$$a_3 = 0.3$$

図 - 11 (b) 「逆型」(透過堤)の波力分布

1 前壁開口率:前壁孔の総面積と前壁の総面積との比率

2後壁開口率:後壁孔の総面積と後壁の総面積との比率

2.5.3 静水圧・浮力・自重

静水圧・浮力・自重の算定は、適切な方法で行うものとする。

〔解 説〕

静水圧・浮力・自重の算定は、**技術基準(平成 11 年制定) 第 7 編 2 . 6 . 3 静水圧、2 . 6 .** 4 **浮力**及び **2 . 6 . 5 自重** に規定に準じる。

2.5.4 地震時慣性力·動水圧

地震時の検討は、震度法により行ってよい。

[解 説]

地震時慣性力・動水圧は、**技術基準(平成 11 年制定) 第 2 編 12 . 3 震度法、14 . 4 . 2 地震時の動水圧** の規定に準じる。

2.5.5 考慮すべき荷重

軟着堤の設計において、考慮すべき荷重を用いて、適切に設計合力を算定するものとする。

[参考]

熊本港で検討された代表的な上部構造である「逆T型」と「逆 型」については、表 - 3 に示す考慮すべき荷重を用いて設計合力を算出した。なお、上部構造が「逆 型」の場合、考慮すべき荷重は水平波力が最大となるときのほか、鉛直波力が最大となるときについても検討した。

 最高波高(H_D)
 繰り返し

 水平波力最大時
 鉛直波力最大時(逆型)

 押し波時
 引き波時

 地震時慣性力

 波力

 地震時動水圧

表 - 3 考慮すべき荷重

繰り返し:波の繰り返しによる影響の検討

2.6 安定計算

2.6.1 — 般

軟着堤の安定計算は、設計供用期間中に応じて設定される外力に対して堤体の安定性を照査することを標準とする。

〔解 説〕

- (1) 軟着堤の安定計算については、堤体水平抵抗に対する検討と堤体鉛直支持力に対する検討を行う。
- (2) 水平外力は全て杭で受け持つため、堤体水平抵抗に対する検討については、杭の応力照査を行う。
- (3) 堤体水平抵抗に対する検討において、杭の根入れ長については、安全な長さを確保するものとし、長杭、短杭の規定はしない。
- (4) 堤体鉛直支持力に対する検討については、杭の軸力を考慮し、「Vaughan 他の式」の基礎の支持力を用いて検討するものとする。

[参考]

熊本港では、杭の根入れ長を $1.2\ell_{\rm ml}$ 以上確保すれば、無限長の杭とみなしている。ここで、 $\ell_{\rm ml}$ とは、港研方式による頭部自由杭の曲げモーメント第一ゼロ点の深さ、あるいは頭部固定杭の曲げモーメント第二ゼロ点の深さである。一般に無限長の杭とみなすためには根入れ長を $1.5\ell_{\rm ml}$ を確保すればよいが、そのときの杭の挙動は根入れ長を $1.0\ell_{\rm ml}$ 確保した場合とほとんど同じであり、根入れ長を $1.0\ell_{\rm ml}$ 確保していれば無限長の杭として杭の挙動を検討しても問題ないと考えられるためである。しかし、地盤反力係数の推定精度にばらつきがあるため、実際の地盤が推定値より小さい場合にも、根入れ長を $1.0\ell_{\rm ml}$ 確保できるよう、根入れ長を $1.2\ell_{\rm ml}$ 以上と設定したものである。

2.6.2 地盤強度評価方法

地盤強度の評価は、適切な方法で行うものとする。

〔解 説〕

(1) 現地実証試験の結果、軟着堤の地盤破壊は、表層部に発生している。従って、地盤の強度は、特に表層付近のせん断力に着目して評価する。

表層近辺における土のサンプリングは困難であり、一軸圧縮試験により土の強度を評価するのは難しいため、ベーンせん断試験で評価することを原則とするが、この試験法は礫等がある場合は過大な値を示す。そこで過大な値を示していないか、適宜三軸試験で確かめる方が望ましい。実際には、ベーンせん断試験値 < 三軸圧縮試験(\overline{CU})値であることから、ベーンせん断試験値が信頼できるとして、この平均値(最小二乗法)を基本に地盤強度を評価する。

- (2) 地盤強度の評価については、次に示す方法で行ってもよい。
 - 1) 杭の付着力 (「くし型」の場合のみ)、基礎の支持力 q_f を算定する場合
 - a) S型地盤 (図 12(a)参照)については、切片を考慮した直線 ($\tau_{f} = \gamma + \beta Z$)を用いる。
 - b) C型地盤 (図 12(b)参照)については、深度方向に地盤強度が一定となる直線 ($\tau_f = \gamma$)を用いる。

2) 地盤反力係数を算定する場合

a) S型地盤(図-12(a)参照)の場合

深さに対する地盤強度の増加割合を地表面でゼロとなる直線で求めるため、切片をゼロとした直線 ($au_f = lpha \mathbf{Z}$) を用いる。

地盤反力係数 k_s の算定には、(式 - 3)を用いることができる $^{2)}$ 。

$$k_{s} = \alpha \sqrt{\frac{2\pi}{\varepsilon_{50} \cdot d}} \tag{ \vec{\pi} - 3 }$$

ここに、 ε_{50} : 一軸圧縮試験におけるせん断強度の 50%ひずみ量

d:杭の直径(m)

 α : $\tau_f = \alpha Z$ の α 深度方向の勾配 (kN/m³)

b) C型地盤の場合(図-12(b)参照)

深度方向に地盤強度が一定となる直線($\tau_f = \gamma$)を用いる。 地盤反力係数 k_c の算定には、(式 - 4)を用いることができる 2)。

$$k_c = \tau_f \sqrt{\frac{2\pi}{\varepsilon_{so}^* d}} \tag{\vec{\pi} - 4}$$

ここに、 ε_{50} : 一軸圧縮試験におけるせん断強度の 50%ひずみ量

d:杭の直径(m)

 τ_f : 非排水せん断強度 (kN/m²)

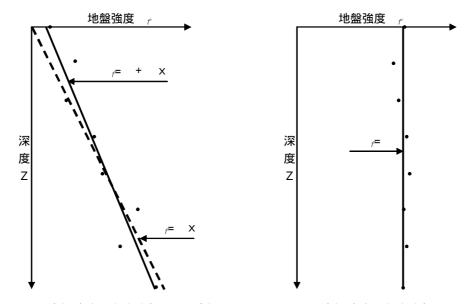


図 - 12(a) 地盤強度の評価例(S型地盤) 図 - 12(b) 地盤強度の評価例(C型地盤)

(3) 地盤が繰り返し載荷を受けると比較的浅い部分で地盤のせん断強さが低下する。しかし、せん断強さが低下した地盤については、約70日後にはもとの強さに回復していたことが報告されている3)。

2.6.3 杭頭固定度と荷重分担係数の設定

軟着堤の設計では、杭頭固定度と荷重分担係数を適切に設定するものとする。

〔解 説〕

- (1) 従来設計法では、杭と底版は剛結されていることを設計の前提としていたが、実際の杭は港研 方式の頭部固定杭として計算した値と頭部自由杭として計算した値の中間的な挙動を示す。中間 的な挙動を示す杭各部の曲げモーメント、水平変位、たわみ角については、杭頭固定度という概 念を用いることにより算出することができる。新設計法では、杭頭固定度を考慮して杭の挙動を 解析する。
- (2) 杭頭固定度 R_{fix} については、(式-5)で定義する。(図-13参照)

$$R_{fix} = \frac{M_{top}}{M_{max-t}} \tag{ $\vec{\pi}$ 5)$$

ここに、 M_{max} : 実際の杭の杭頭に生じている曲げモーメント

 $M_{ ext{max-}t}$: 杭頭固定時 ($R_{ ext{fix}}$ =1.0) に杭頭に生じる曲げモーメント

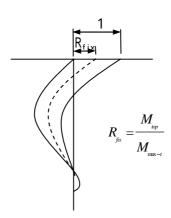


図 - 13 曲げモーメント分布図

杭のたわみとたわみ角および曲げモーメントについては、次式のような関係がある。

・杭頭固定の場合

$$M_{\max,i} = M_{\max}$$
 $i_{top} = 0$ $(y_{top} = y_{topfix}$ とする。)

・杭頭自由の場合

$$M_{top} = 0$$

$$i_{top} = i_{max} (= i_{topfree}$$
とする。)
$$(y_{top} = y_{topfree}$$
とする。)

・杭頭固定と杭頭自由の中間の場合

$$R_{fix} = \frac{M_{top}}{M_{max-t}}$$

$$\frac{\dot{i}_{top}}{i_{topfree}} + R_{fix} = 1$$

$$\frac{y_{top} - y_{topfix}}{y_{topfree} - y_{topfix}} + R_{fix} = 1$$

 M_{max} :最大曲げモーメント

ౣౣ :杭頭部におけるたわみ角

i: 杭頭部における最大たわみ角

 $i_{topfree}$: 杭頭自由の場合の杭頭部におけるたわみ角

y_{ton} :杭頭変位

 y_{topfix} : 杭頭固定の場合の杭頭変位 $y_{topfree}$: 杭頭自由の場合の杭頭変位

上記の杭頭固定度 $R_{_{fix}}$ を設定することにより、杭頭曲げモーメント $M_{_{top}}$ 、地中部最大曲げモーメント M 、杭頭たわみ角 $i_{_{top}}$ 、杭頭変位 $y_{_{top}}$ を算出することが可能である $^{3)}$ 。

- (3) 各杭の杭頭固定度については、現地実証試験等を行い適切に設定するのが望ましい。
- (4) 杭に作用する水平荷重については、杭頭固定度によって変わる。この要因は、杭の横方向のバネ定数の違いによるものと考えられる。設計に用いる杭の荷重分担係数を設定するためには、杭頭固定度、杭の横方向のバネ定数および荷重の分担について整理する必要がある。

〔参 考〕

- (1) 熊本港における模型実験では、杭頭固定度が R_{fix} =0.8~0.4 の範囲でばらついていることが確認された 4)。
- (2)熊本港では、現地実証試験の結果、杭頭固定度が R_{fix} =0.6~0の範囲でほぼ均等にばらついたため、設計においても杭頭固定度が R_{fix} =0.6~0の範囲で均等にばらつくと考え、以下のように設定した。
 - 1) 堤体水平抵抗の検討については、杭頭部の設計曲げモーメントを算出するときの杭頭固定度を R_{fix} =0.6、荷重分担係数を α_T =1.25 と設定し、地中部の設計曲げモーメントを算出するときの 杭頭固定度を R_{fix} =0、荷重分担係数を β_T =0.85 と設定した。
 - 2) 堤体鉛直支持力の検討については、堤体水平抵抗の検討と同様の設定が考えられる。しかし、 杭打設において、高い施工精度が確保され、杭頭固定度がすべて R_{fix} =0.6 になると想定した場合、杭の応力については杭頭固定度がばらついたときよりも発生応力が小さくなるが、堤体鉛直支持力の検討については、杭頭固定度がばらついたときよりも杭頭モーメント反力は大きく なる。そのため、堤体鉛直支持力の検討については、杭頭固定度 R_{fix} =0.6、 γ_T =1.0 と設定した。

2.6.4 堤体水平抵抗の検討

堤体水平抵抗に対する検討は、杭に生じる応力度 σ_s の杭の許容応力度 σ_{sa} に対する比が 1.0 以下であることを確かめることにより行う。

$$\sigma_s/\sigma_{sa}$$
 1.0 (式-6)

〔解 説〕

- (1) 「くし型」の堤体水平抵抗については、まず水平外力が小さいときには堤体底面と粘性土表層との付着力で抵抗するが、荷重が大きくなるにつれて水平抵抗は堤体底面と粘性土表層との付着力から杭に移行する。そのため、水平外力はすべて杭で受け持つものとし、堤体底面と粘性土表層との付着力による水平抵抗は期待しないものとする。
 - (2) 杭の許容応力度 σ_{sa} は、**技術基準 (平成 11 年制定) 第3編 第2章 鋼材** による。
 - (3) 杭に生じる曲げ圧縮応力度 σ 。は、(式 7) により算出することができる。

$$\sigma_s = \frac{M}{Z} \pm \frac{N}{A} \tag{ \vec{\pi} - 7)$$

ここに、 M :曲げモーメント($N \cdot mm$)

Z : 杭の有効断面係数 (mm³)

N : 杭の軸力(N)

A : 杭の有効断面積 (mm^2)

- 1) 曲げモーメントM の算出にあたっては、以下のとおりとする。
 - a) 水平合力 H に対する杭の挙動は以下のように考えるものとする。

杭の軸直角方向の抵抗力算定には、**技術基準(平成11年制定) 第5編 4.3 杭の軸直角** 方向許容支持力 に示された「港研方式」を用いてよい。

杭頭の拘束条件のばらつきを考慮する(杭頭固定度 R_{fix} を考慮する)。

堤体に杭を2列配置にした場合、従来設計法では、水平外力に対して半分の杭で抵抗する考え方であったが、新設計法では、水平外力に対してすべての杭で抵抗するものとする。

b) 各杭の荷重分担は、杭頭固定度によって異なり、杭頭固定度が完全固定($^{R_{fix}}$ =1.0)に近づくにつれて大きくなる。杭 1 本当たりの水平荷重 h_i は、適切に設定された杭頭固定度 $^{R_{fix}}$ と荷重分担係数を用いて(式 - 8)(式 - 9)により算出することができる。

杭頭部の設計曲げモーメントを算出するときの杭1本当たりの水平荷重は(式-8)により算出することができる。

$$h_i = \alpha_T H / N_i \tag{ \vec{\pi} - 8)}$$

ここに、 $lpha_{\scriptscriptstyle T}$: 杭頭部を検討するときの荷重分担係数

 N_i :全杭本数(本)

 h_i : 杭1本当たりの水平荷重(kN/本)

H:水平合力(kN)

杭頭部の設計曲げモーメントの算出は、杭頭完全固定(R_{fix} =1.0) のときの杭頭曲げモーメントに R_{fix} を乗じて求めることができる。

地中部の設計曲げモーメントを算出するときの杭1本当たりの水平荷重は(式-9)により算出することができる。

$$h_i = \beta_T H / N_i \tag{ \vec{\pi} - 9)}$$

ここに、 $eta_{\!\scriptscriptstyle T}$: 地中部を検討するときの荷重分担係数

 N_i :全杭本数(本)

h_i: 杭1本当たりの水平荷重(kN/本)

H:水平合力(kN)

c) 水平合力Hは、本マニュアルの2.5 外力計算に準じる。

2) 杭の軸方向力Nは**2.6.5 堤体鉛直支持力**の検討で算出した杭の付着力 V_1 もしくは V_2 とする。

〔参考〕

熊本港では、水平荷重レベルが小さいときは堤体底面と粘性土表層との間に生じる付着力で抵抗する割合が大きいが、荷重が大きくなると水平荷重はほとんど杭で受け持つようになることが現地実証試験により確認された(図-14参照)。

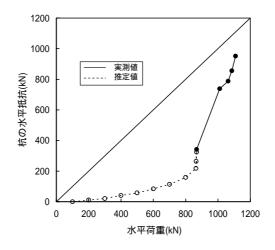


図 - 14 杭の水平抵抗力と水平荷重の関係

2.6.5 堤体鉛直支持力の検討

堤体鉛直支持力に対する検討は、鉛直荷重強度V/(BL)の基礎の支持力 q_f に対する比に安全率 F を乗じた値が 1.0 以下であることを確かめることにより行うものとする。

$$F\{V/(BL)\}/q_f$$
 1.0 (式 - 10)

ここに、 V : 鉛直合力 (kN)

B : 堤体幅(m) L : 堤体延長(m)

〔解 説〕

(1) 基礎の支持力 q_f は、(式 - 11)の Vaughan 他の式 5 で算定するものとする。

$$\begin{split} q_f &= c_{u0} R(2+\)icl \cdot F_{ec} \\ R &= \frac{c_{u1}}{c_{u0}} = F_R \{1 + \frac{\rho \cdot B / c_{u0}}{4 \cdot (2+\)} F_{ec} \} \\ icl &= ic \cdot \left[1 / R + (1-1/R) 4\theta /\ \right] \\ ic &= 0.5 + (2\theta + \sin 2\theta) / (2+\) \\ F_{ec} &= 1 - 2e / B \\ \cos 2\theta &= H \, ' / \, c_{u0} \end{split}$$

ここに、 q_f :深さ方向に強度増加する粘性地盤上の偏心傾斜荷重を受ける基礎の支持力 (kN/m2)

 c_{u0} : 地表面の非排水せん断強度 (kN/m^2)

 c_{u1} :鉛直荷重に対して得られる地盤強度(平均強度)(kN/m^2)

R:深さ方向のCの増加の補正値

icl:傾斜による補正値

ic :傾斜荷重による支持力の減少を考慮した支持力の係数

θ : 荷重の傾斜角度

 ρ : せん断強度の深さ方向の増加率 (kN/m^3)

B :基礎幅(m)

 F_{ec} :偏心による補正値

e :全合力の偏心量(m)

H':水平荷重強度(基礎単位面積当りの平均荷重強度)(kN/m^2) (「くし型」の場合、水平力はすべて杭で受け持つため、H'=0)

F_R :深度方向の強度増加を考慮した支持力の係数(図-15)

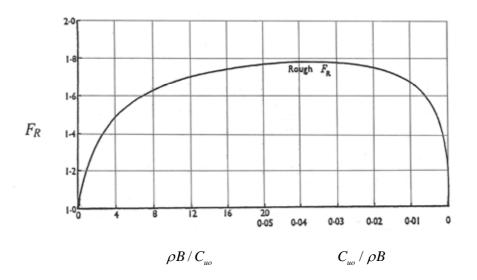


図 - 15 支持力係数 $F_{\scriptscriptstyle R}{}^{\,\,6)}$

過去の実験により、Vaughan 他による支持力式の適合性が高いことが判明した(図 - 16 参照)。そこで、軟着堤の堤体鉛直支持力の検討には Vaughan 他の式を使用するものとする。

ただし、Vaughan 他の式の適用にあたっては、 $\bf 2.6.4$ **堤体水平抵抗**の検討に示すように、設計上、水平力はすべて杭で抵抗するように考えているため、水平荷重強度をH'=0 としている。

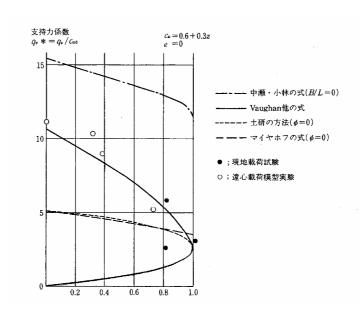


図 - 16 支持力式の比較

水平荷重強度 H'

1) 基礎の支持力 $q_{_f}$ は、全合力の偏心量 e の関数である。全合力の偏心量 e は、(式 - 12) により 算出することができる(図-17参照)。

$$e = \frac{Hy + We_0 + M_{top} + V_1 L_1 - V_2 L_2}{W + V_1 + V_2}$$
 (\pi - 12)

ここに、 H:水平合力(kN)

y : 水平合力の重心が作用する堤体底面からの高さ (m)

W: 浮力を考慮した堤体自重(鉛直波力含む)(kN)

 e_o : 杭の付着力を考慮しないときの偏心量 $(\,{
m m}\,)$

 M_{top} : 水平合力Hが作用するときの杭頭モーメント反力(kN·m) V_1 :前趾側の杭の付着力(kN)

 V_2 :後趾側の杭の付着力(kN)

 $L_{\rm l}$: 堤体中心位置 0 から前趾側の杭中心位置までの距離 (m)

 L_2 : 堤体中心位置 0 から後趾側の杭中心位置までの距離 (m)

杭の付着力を考慮しないときの偏心量 e_0 は(式 - 13)により算出することができる。

$$e_0 = \frac{Hy + Wx + M_{top}}{W}$$
 (\(\vec{x} - 13\))

ここに、x: 浮力を考慮した堤体自重Wの重心が作用する堤体中心位置からの距離(m)

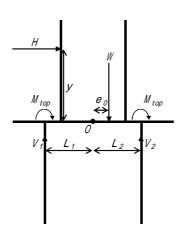


図 - 17 堤体に作用する外力

a) 水平合力 H が作用するときの杭頭モーメント反力 M_{top} は、「港研方式」により算出する。そのときの杭 1 本当たりの水平荷重 h_i は、(式 - 14)により算出することができる。ただし、堤体鉛直支持力の検討時の杭頭固定度 R_{fix} と荷重分担係数 γ_T は適切に設定するものとする。

$$h_i = \gamma_T H / N_i \tag{ \vec{\pi} - 14)}$$

ここに、 h_i : 杭1本当たりの水平荷重(kN/本)

 γ_T : 堤体鉛直支持力の検討時の荷重分担係数

H :水平合力 (kN) N_i :全杭本数 (k)

杭頭曲げモーメントは、杭頭完全固定($R_{\it fix}$ =1.0)のときの杭頭曲げモーメントに $R_{\it fix}$ を乗じて求めることができる。

b) 杭の付着力 V_1 、 V_2 は、(式 - 15) に示す許容付着力 V_a の範囲内とする。ただし、杭の引き抜き試験等を実施して適切に設定する場合は除く。

$$V_a = V_{\text{max}} / 3.0$$
 (地震時の場合、 $V_a = V_{\text{max}} / 2.5$) (式 - 15)

ここに、 $V_{
m max}$:杭の最大付着力(kN)

杭の最大付着力 $V_{
m max}$ は、波圧作用時、地震時とも杭全長を考慮する。

c) 杭の付着力については、堤体幅・全合力の偏心量によって発揮する量が異なるため、以下のように考える(図-18参照)。

杭の付着力を考慮しなくても、堤体鉛直支持力の検討が $F\left\{V/\left(BL\right)\right\}/q_f$ 1.0 の場合は、杭の付着力は作用しないと考える。これにあたるのが図 - 18 の A 区間である。

杭の付着力を考慮しないで、堤体鉛直支持力の検討が $F\left\{V/\left(BL\right)\right\}/q_f>1.0$ の場合は、堤体鉛直支持力の検討が $F\left\{V/\left(BL\right)\right\}/q_f=1.0$ となるように杭の付着力が作用するものと考える。まず、杭は鉛直合力を低減するのではなく、偏心量のみ是正するような挙動を示すと考える。($V_1+V_2=0$) これにあたるのが図 - 18 の B 区間である。

上記に示す場合でも堤体鉛直支持力の検討が $F\left\{V/\left(BL\right)\right\}/q_f>1.0$ となるときは偏心量の是正だけでなく、鉛直合力を低減するような杭の付着力が作用するものと考える。これにあたるのが 図 - 18 の C 区間である。この場合でも堤体鉛直支持力の検討が $F\left\{V/\left(BL\right)\right\}/q_f>1.0$ となるときは、その堤体幅では成立しないものと考える。

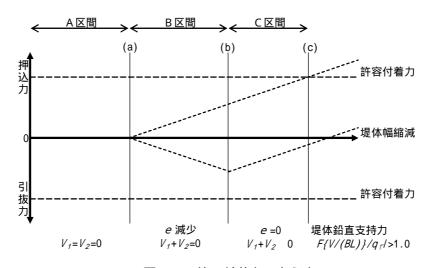


図 - 18 杭の付着力の考え方

(2)鉛直合力V は、(式 - 16)により算出することができる。

$$V = W + V_1 + V_2$$
 (式 - 16)

ここに、 W:浮力を考慮した堤体自重(鉛直波力含む)(kN)

 $egin{aligned} V_{_1} &:$ 前趾側の杭の付着力(kN) $V_{_2} &:$ 後趾側の杭の付着力(kN)

(3)安全率 F は、従来設計法の堤体鉛直支持力の安全率と同じ値 (=1.5) とし、地震時についても同じ値 (=1.5) とする。

従来設計法では、「浅い基礎の支持力」の「その他」と同じ安全率を採用している(表 - 4 参照)。

		TO BE A CONTRACTOR OF THE CONT
		安 全 率 (F)
防 波 堤	滑 動	1. 2
(混成堤)	転 倒	1. 2
斜面の安定	(円形すべり)	1. 3
基礎の支持力	砂地盤	2.5 (重要なもの), 1.5 (その他)
金旋り又行力	粘性土地盤	2.5 (重要なもの), 1.5 (その他)

表 - 4 港湾構造物の安全率

[参考]

設計で想定する極限支持状態では水平力はすべて杭で抵抗するようになるが、2.6.4 **堤体水平抵抗**の検討の図 - 14 に示した熊本港での実証実験結果に見られるように、水平荷重レベルが小さいときは堤体底面と粘性土表層との間に生じる付着力で抵抗する割合が大きい。

堤体底面と粘性土表層との間の付着力は、鉛直荷重強度が大きい場合は低下しないが、2.6.5 **堤** 体鉛直支持力の検討の図 - 19 に示すように鉛直荷重強度 V/c_{u0} が 2.5 以下になると、低下することが知られている 7 。

水平荷重レベルが小さいときに基礎が極限破壊を起こすことはないが、水平荷重レベルが小さなときに期待できる堤体底面と粘性土表層との間の付着力 (地表面の非排水せん断強度 c_{u0})は、小さな水平荷重レベルの杭・地盤への繰り返し荷重の影響を軽減しているものと考えられる。

一般に、軟着堤は鉛直荷重強度が極力小さくなるよう設計するが、鉛直荷重強度の過小による堤体底面と粘性土表層との間の付着力の低減を避けるため、熊本港においては鉛直荷重強度 V/c_{u0} が 2.5 以下になっていないことを確認している。

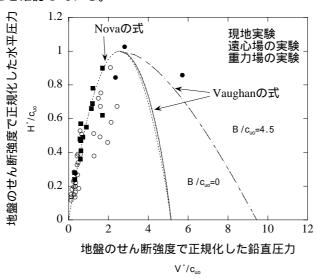


図 - 19 鉛直荷重の減少に伴う水平耐力の低下

2.6.6 波の繰返しによる影響の検討

軟着堤の安定計算では、最高波に対して静的な検討を行うほかに、最高波と比較的同じような 規模の波が堤体に繰返し作用するときの地盤への繰返し荷重による影響の検討も行うものとする。

〔解 説〕

- (1) 波の繰返しによる影響を検討するのは、最高波と比較的同じような規模の波が堤体に繰返し作用することによって、堤体の変位は一回の最高波の影響より大きくなることが想定されるからである。
- (2) 波の繰り返しによる影響を考慮して、堤体水平抵抗の検討と堤体鉛直支持力の検討を行うものとする。
 - 1) 堤体水平抵抗に対する検討については、杭の根入れ長を $1.5\ell_{m1}$ 以上確保した場合は、以下に示す波の繰り返しによる影響の検討を用いてもよい。杭の根入れ長を $1.5\ell_{m1}$ 以下とした場合は、別途適切に検討するものとする。ここでいう ℓ_{m1} は、地盤の劣化を考慮しない無限長の杭として算出した値である。
 - 2) 堤体水平抵抗の検討において、繰返し荷重による影響については、地盤反力係数の低下で評価 し、(式 17) で示す地盤反力係数比 R_k をもとの地盤反力係数に乗じて低下した地盤反力係数 を算出する。地盤反力係数の深度分布は、図 20 のとおりとなる 3 。

 $R_k = 1 - \alpha_k \cdot \beta_k \cdot \gamma_k \tag{\vec{\pi} - 17}$

ここに、 $R_{\scriptscriptstyle k}$: 地盤反力係数比

 $lpha_{_k}$:荷重レベルに対する補正項

 $\alpha_{k} = X \cdot y_{0} / B \quad (\leq 1.0)$

 eta_{k} :繰返し回数に対する補正項

$$\beta_k = \begin{cases} \frac{n}{Y} & (n \le Y) \\ 1 & (n \ge Y) \end{cases}$$

 γ_k :深度に対する補正項

$$\gamma_{k} = \begin{cases} 0 & (z \ge 0.5\ell_{m1}) \\ \frac{0.5\ell_{m1} - z}{0.25\ell_{m1}} & (0.5\ell_{m1} \ge z \ge 0.25\ell_{m1}) \\ 1 & (0.25\ell_{m1} \ge z) \end{cases}$$

y₀:処女載荷時の地表面のたわみ(m)

B: 杭幅(m)n:繰り返し回数

 ℓ_{m1} : 杭頭固定条件での処女載荷時の曲げモーメントの第二ゼロ点の深さ (m)

 $X: \alpha_{\iota} \succeq y_{0}/B$ の関係から求まる係数

Y:地盤反力係数の低下が定常となるときの繰り返し回数

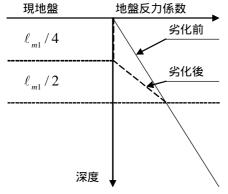


図 - 20(a) 地盤反力係数の深度分布 (S型地盤の場合)

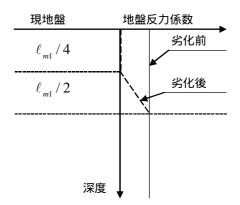


図 - 20(b) 地盤反力係数の深度分布 (C型地盤の場合)

3) 堤体鉛直支持力に対する検討において、波の繰り返しによる影響については、考慮できる杭の最大付着力を図 - 21 のとおり低減させて評価する。

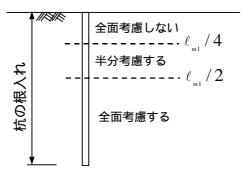


図 - 21 杭の最大付着力の作用図

(3) 繰り返しによる影響の検討に用いる荷重については、 $H_{1/10}$ 程度としてよい。

[参考]

- (1) 熊本港では、杭の根入れ長を $1.2\ell_{m1}$ 以上確保すれば、上記に示す波の繰り返しによる影響の検討を用いてもよいこととした。杭の根入れ長を $1.2\ell_{m1}$ 以上確保しない場合については、別途、適切に検討する。
- (2) 熊本港では、過去の実証試験結果より(式 17)のX、Yの値をX = 3.75、Y = 25 と設定した 3 。
- (3) 平成2年の熊本港における繰返し実験の結果からすると、途中の荷重レベルで繰返し載荷が作用しても、より大きな荷重レベルでの繰返し載荷を続けていくうちに前の小さな荷重レベルでの繰返し載荷の影響は次第になくなっていく。すなわち、最大荷重が他の荷重に比べて十分に大きい場合には、その一回の最大荷重によって杭の変形が支配され、既往の小さな荷重の影響がほとんどなくなる³⁾。繰返し荷重の影響を考慮する必要があるのは、最大荷重に順じるような大きさの荷重が繰返し作用し、一回限りの最大荷重による影響より大きくなると推定されるときである。

今回の構造物は、回数が増えるごとに地盤の疲労の程度が増し、25 回で定常になる、言い換えれば最も弱い状態になる。この最も弱い状態になる条件(25 回)で、最も大きな波が作用したときが、最も危険となる。従って、1 擾乱中上位 25 波の平均波高値を設計波高とした。一般的に最高波高は 1/250 最大波高を用いているため、熊本港では、波の繰り返しによる影響の検討で用いる設計波については、上位 25 波を 25/250=1/10 として 1/10 最大波(H_{1/10}、T_{1/10})と設定した。

2.7 先頭函としての検討

2.7.1 — 般

先頭函は、ある一定の期間は先頭函特有の荷重を受けるが、将来的には標準函と同様の荷重を受ける。そのため、先頭函特有の荷重条件に対して設計を行うとともに、標準函としての設計要件も満たす必要がある。

〔解 説〕

(1) 先頭函とはある一定の期間だけ堤頭部となる堤体のことである。また、標準函とは先頭函以外の堤幹部となる堤体のことである。ある期間すぎると防波堤が延長されるため、先頭函は標準函と同様の荷重条件となる。

2.7.2 外力の考え方

先頭函に作用する外力は、適切に算定するものとする。

〔解 説〕

- (1) 外力の算定については、本マニュアルの2.5 外力計算に準じる。
- (2) 先頭函については法線直角・法線平行方向の2方向、標準函については法線直角方向の1方向のみの検討とする。
- (3) 法線直角方向と法線平行方向の波圧が最大になる時刻は厳密にはずれるが、この時間差は考慮しないものとする。
- (4) 堤体には、波圧合力が最大となる状況以外に、最大の偏心モーメントを与える状況(法線平行 方向の杭に作用する荷重が最大となる状況)が存在する。
- (5) 波力最大時の検討に対しては荷重の偏心は考慮しない。
- (6) 偏心モーメント最大時の検討については偏心量を ごとに設定する。ただし、波圧の作用高さ は変更しない。
- (7) 偏心モーメントが最大になるのは、概ね、防波堤港外側沖側端部に波峰が現れるときなので、 法線平行方向波圧については最大波圧を用いる。
- (8) 先頭函は、引き波時、地震時は考慮しなくてよい。

[参考]

(1) 熊本港では、標準函としての検討は50年確率波を用い、先頭函としての検討は10年確率波を用いている。

(2) 先頭函には、法線直角方向と法線平行方向からの波力が作用するため、図 - 22 に示すそれぞれの受圧面積を考慮して波力を算定する。法線直角方向の波力については、本マニュアルの 2.5. 2 波力に準じる。法線平行方向については、技術基準(平成11年制定) 第2編第5章 波力に準じる。

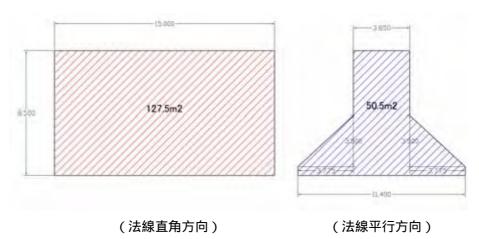


図 - 22 受圧面積の比較 (熊本港の例)

(3) 熊本港では、図 - 23 に示すように堤体延長 15m に対して波長が 38.3m と短い特殊な条件であるため、位相差による水平荷重の偏心を考慮している。

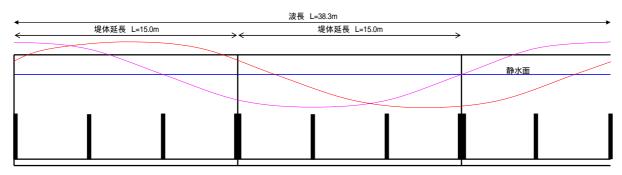


図 - 23 堤体延長と波長の関係

(4) 外力の偏心を評価するため、波を波板のような規則波(図-24参照)と考え、堤体の港外側と港内側に作用する静水圧の差分を擬似的な波圧とみなし、その大きさと荷重水平方向偏心量を計算している。

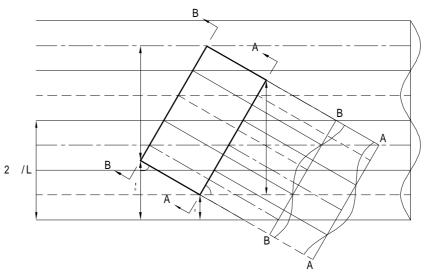


図 - 24 波の来襲角と位相の考え方

波の位相差から水平荷重の偏心を検討する手順を以下に示す。

1) 波形の設定

防波堤の前後壁に接する波の振幅や波峰・谷の表現は以下のように設定する。まず、港外側については波の反射を考慮し、=0。時には振幅は $2 \times Hm$ 、=90。時にはHmとする。

平均水深をhoとして、港外側の波形を以下のように表すものとする。

$$Z = \cdot \cos + ho$$
 (式 - 18)
= 0.5 \cdot (1 + \cos) \cdot H (式 - 19)

また、港内側については防波堤による遮蔽効果を考慮し、波の振幅を、 = 90°時には港外側と同様にHm、 = 0°時には一般設計と同様に「0m」とした。

港内側の波形については、以下のように表すものとする。

$$Z = \cdot \cos + ho$$
 (式 - 20)
= 0.5 \cdot (1 - \cos) \cdot H (式 - 21)

以上の式で表される相対波頂高(/ H)と波向 の関係は図 - 25 のようになる。

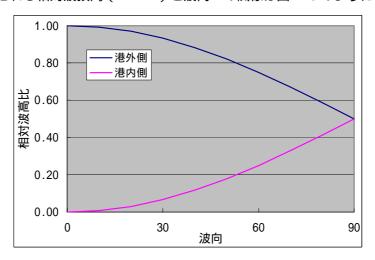


図 - 25 相対波高比と波向の関係

2) 波の位相差

前壁沖側の位相を oとすると、前壁陸側の位相は o+ となる。

後壁沖側の位相 o は

後壁陸側の位相は、 o + となる。

3) 壁体に作用する静水圧(擬似波圧)の計算

波圧と静水圧は別のものであるが、波圧のかなりの部分を港内外の静水圧差が占める。 位相を考慮した波圧の算出法がないため、本検討においては静水圧差の合力中心を波圧合力 中心と考え荷重の偏心を算出する。

前後壁沖側端から×mでの地点の静水圧p(x)は

$$p(x) = 1/2 \times o \cdot Z(x)^{2}$$
 (式 - 24)

となる。波圧に相当するのは図 - 26 に示すように前壁・後壁の圧力差となる。

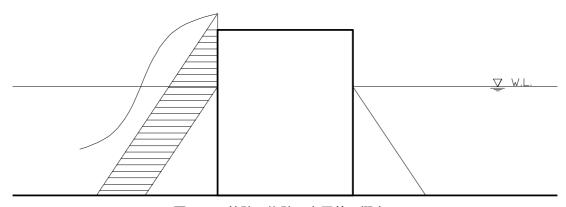


図 - 26 前壁・後壁の水圧差の概念

4) 荷重重心(偏心量)の算出法

荷重重心位置Xは次式で算出される。

$$X = \{(7.5 - x) \cdot p(x) / p(x)\}$$
 (式 - 25)

(4) 計算結果 (参考:熊本港の堤体に対する計算)

防波堤(南)13工区の堤体構造において、杭最大軸圧縮力を与える波向は = 30°で、法線方向水平変位を与える波向は = 60°となる。これらの波向について、水圧(疑似波圧)鉛直軸廻り偏心モーメント、偏心量の結果を時間経過図(図-27、28)として示す。ただし、図示したのは、振幅量を1とする正規化された水圧(疑似波圧)と偏心モーメントならびに堤体延長の1/2(=7.5m)を1とした正規化された偏心量である。また、経過時間についても1周期(5.5秒)を1とした正規化された時間である。

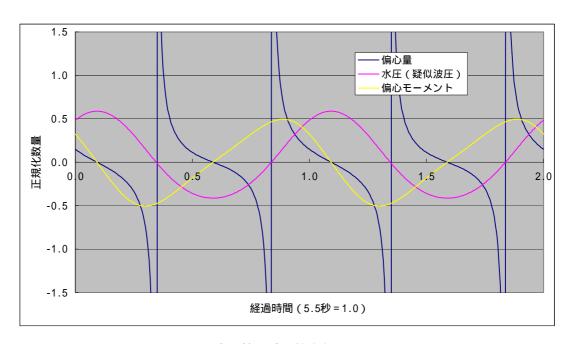


図 - 27 水圧等の時間的変化 (= 30°)

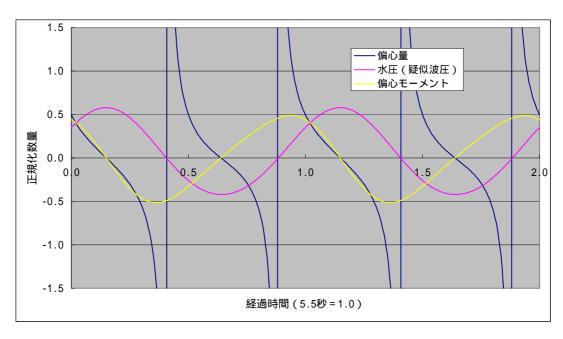


図 - 28 水圧等の時間的変化 (= 60°)

いずれの波向にも共通にいえることは、最大水圧 (疑似波圧)を与える時には偏心量は e=0 であるということである。また最大偏心モーメントを与える時の水圧の大きさも、波向に拘わらず最大水圧の約 30% (=30° 時は約 29% =60° 時は約 27%) となる。

ただし、偏心距離 e は波向によって異なり、図 - 29 に示すような関係となっている。

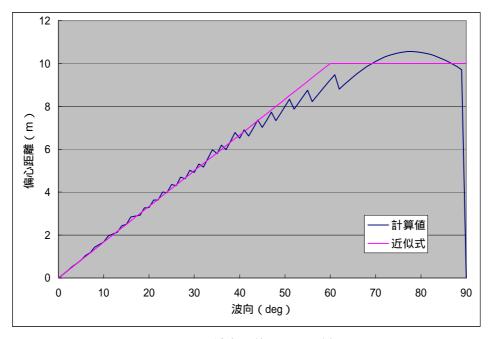


図 - 29 波向と偏心量の関係

ここで検討したのは疑似波圧であって、設計波圧ではないため、設計にあたっての波圧は本マニュアルの 2.5.2 **波力**に準じる。

2.7.3 堤体水平抵抗の考え方

先頭函に作用する外力を適切に考慮して、堤体水平抵抗の検討を行うものとする。

〔解 説〕

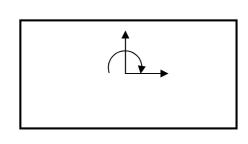
- (1) 堤体水平抵抗の検討については、本マニュアルの2.6.4 堤体水平抵抗の検討に準じる。
- (2) 荷重重心と抵抗重心がずれると堤体に偏心モーメントが発生し、不均等に杭が水平荷重を分担する状況が存在する。
- (3) 荷重の水平方向の偏心を考慮し、底版を剛体と考えた線形解法(法線直角方向水平力、法線平行方向水平力、鉛直軸廻リモーメントの3要素の釣合式)で杭が分担する方向別水平力を算出する。
- (4) 杭の強軸方向に作用する曲げモーメント、杭の弱軸方向に作用する曲げモーメントおよび杭の軸力が同時に作用するときの杭に生じる曲げ圧縮応力度 σ_s は、(式 26) により算出することができる。

$$\sigma_s = \frac{M_x}{Z_x} + \frac{M_y}{Z_y} \pm \frac{N}{A}$$
 (\pi - 26)

ここに、 $M_{_{\mathrm{T}}}$: 杭の強軸方向に作用する曲げモーメント (N- mm)

 M_{\odot} : 杭の弱軸方向に作用する曲げモーメント ($N \cdot mm$)

 Z_x : 杭の強軸方向の有効断面係数 (mm^3) Z_x : 杭の弱軸方向の有効断面係数 (mm^3)


N : 杭の軸力(N)

A : 杭の有効断面積 (mm²)

- (5) 水平変位量の計算は、現行どおり港研方式により行う。
- (6) 隣接函との衝突については、変位を規制するか、隣接函との間隔を広げるか総合的な判断から 許容変位量を設定する。
- (7) 波の繰り返しによる影響の検討を行うときの限界については、 $H_{1/10}$ 波浪時の地盤劣化前の条件での計算変位で照査する。
- (8) 地盤反力係数の低下を評価する式において、荷重レベルに対する補正項係数 が1を超えない ことを確認する。これを超える場合には、別途地盤の劣化について検討を行う必要がある。

[参考]

- (1) 熊本港では、以下に示す計算上の仮定(線形解析)により、杭水平荷重の不均等分担を考慮している。
 - ・底版は剛体とする。
 - ・底版の変位は、図 30 に示すように法線直角方向の変位、法線平行方向の変位、図心周りの回転を考慮する。
 - ・杭頭の法線直角方向の移動量を以下のように設定した。 底版法線直角方向変位 + 杭の図心からの法線平行方向距離×回転角
 - ・杭頭の法線平行方向の移動量を以下のように設定した。 底版法線平行方向変位 + 杭の図心からの法線直角方向距離×回転角
 - ・杭頭反力の法線直角ならびに法線平行方向の成分は、それぞれの杭頭移動量に比例する。
 - ・杭頭法線平行方向のバネ定数は、法線直角方向の0.7倍とした(図-31のグラフ参照)。

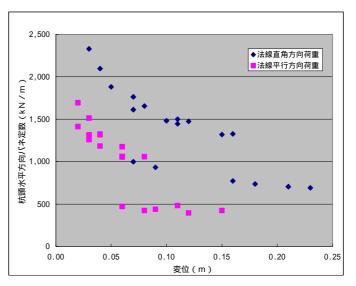


図 - 30 底版の変位の考え方

図 - 31 変位と杭頭水平バネ定数の関係の例

(2) 上記で計算された杭水平荷重を用いて、水平変位量を算出する。熊本港では、水平変位量の計算を行うときの杭頭固定度を $R_{\rm fix}$ =0.35 と設定している。

2.7.4 堤体鉛直支持力の考え方

先頭函に作用する外力を適切に考慮して、堤体鉛直支持力の検討を行うものとする。

〔解 説〕

- (1) 堤体鉛直支持力の検討については、本マニュアルの2.6.5 堤体鉛直支持力の検討に準じる。
- (2) 底版を剛体と考えた線形解法(鉛直力、法線平行方向軸廻りモーメント、法線直角方向軸廻りモーメントの釣合式)で杭の軸力を算出する。

[参考]

- (1) 熊本港では、杭の軸力を以下に示す計算上の仮定(線形解析)により行った。
 - ・底版は剛体とする。
 - ・底版の変位は、図 32 に示すように鉛直方向の変位、法線平行方向軸廻りの回転、法線直角方向軸廻りの回転を考慮する。
 - ・杭頭の鉛直移動量を以下のように設定した。 底版鉛直方向の変位 + 杭の図心からの法線直角方向距離×回転角 1 + 杭の図心からの法線平行方向距離×回転角 2
 - ・杭頭反力は、それぞれの杭頭の鉛直移動量に比例する。

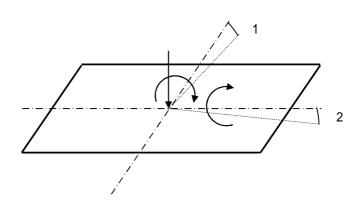


図 - 32 杭軸力の考え方

(2) 法線直角方向と法線平行方向に波力を同時に受けるときは、図 - 33 に示す有効接地面積を用いて堤体鉛直支持力を検討する。有効接地面積は Meyerhof の方法 8 によるものとする。有効基礎幅については堤体幅 B をそのまま用いる。有効基礎延長については法線平行方向の偏心量 e_y で基礎延長 L (堤体延長)を低減する。堤体幅 B と有効基礎延長 L を用いて有効接地面積を算定する。「Vaughan」の方法では、堤体幅 B と法線直角方向の偏心量 e_x を用いる。

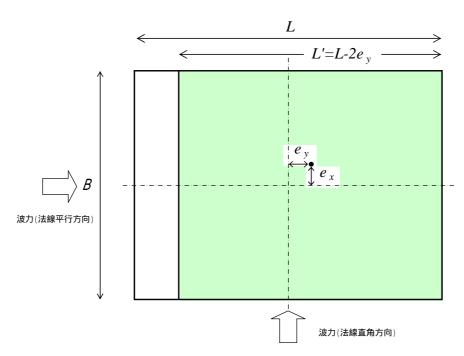


図 - 33 有効接地面積の考え方

3.細部設計

3.1 一般

コンクリート構造物の設計は、限界状態設計法によることを標準とする。

〔解 説〕

- (1) 部材の細部設計は、終局限界状態、使用限界状態及び疲労限界状態について行うことを標準とする。
- (2) 限界状態設計法によって部材の安全性の検討を行う場合においては、材料係数、荷重係数、構造解析係数、部材係数及び構造物係数の5種類の部分安全係数には、限界状態の種別に応じて構造物の特性、材料及び荷重の特性等を勘案した適切な数値を用いる。
- (3)終局限界状態とは、構造物の設計供用期間中に大きい荷重が一度作用することによって断面破壊等使用不可能となる状態である。
- (4) 使用限界状態とは、構造物の設計供用期間中に比較的しばしば作用する程度の大きさの荷重によって、コンクリートに発生するひび割れ幅が過大となり、正常な使用に適さなくなるか、または耐久性を損なう状態である。
- (5) 疲労限界状態とは、設計供用期間中の変動荷重の繰り返し作用による断面破壊等によって使用不可能となる状態である。
- (6) 設計に用いる部分安全係数は 技術基準(平成11年制定) 第3編 第3章に示す値を用いる ことができる。

3.2 細部設計の手順

軟着堤の細部設計にあたっては、**技術基準(平成 11 年制定) 第3 編第3章 コンクリート**、 **第4編 プレキャスト部材**及び**コンクリート示方書**による。

〔解 説〕

軟着堤の細部設計の設計手順は、一般に図 - 34 に示す手順で行うのがよい。

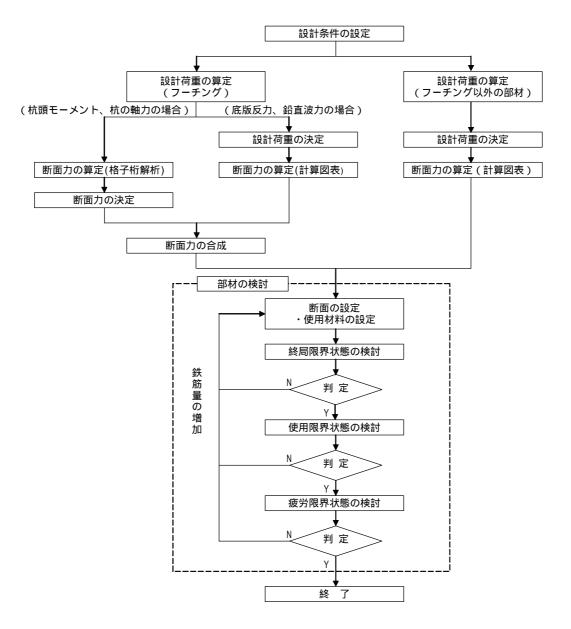


図 - 34 細部設計フロー

3.3 設計条件の設定

3.3.1 細部設計に用いる設計波

細部設計に用いる設計波は、終局限界状態、使用限界状態および疲労限界状態のそれぞれに対して適切に設定するものとする。

〔解 説〕

- (1) 終局限界状態に用いる設計波は、構造物の基本設計に用いた設計波高 H_Dおよび周期を使用する。
- (2) 使用限界状態に用いる設計波は、**技術基準(平成11年制定)**p.332 に示されているように設計 供用期間中にそれ以上の波が来襲する回数が1万回オーダーの波を対象とする。
- (3) 疲労限界状態に用いる設計波は、設計供用期間中のすべての波浪が対象となる。
- (4) 使用限界状態および疲労限界状態に用いる設計波は、設計対象区域の波浪観測データから求める。
- (5) 設計対象地域の波浪観測地点において求められた、波高 周期(X年間観測)の度数分布を用いる。設計供用期間中に出現する波高別頻度を計算するには、度数分布表のデータにレーリー分布の理論を適用し、それを設計供用期間中に出現すると考えられる波浪データに置き換えることにより求める。対象波の算出については港湾技研資料 9)に示す方法により求めることができる。

3.3.2 材料

構造物に使用する材料は、作用する物理的外力、環境作用、設計供用年数、施工性、経済性、 環境に及ぼす影響等を考慮して、適切に選定する。

3.3.3 荷重係数と荷重の組み合わせ

荷重係数と軟着堤に作用する荷重の組み合わせについては、適切に設定するものとする。

〔解 説〕

- (1) 軟着堤に作用する荷重としては、水平・鉛直波力、静水圧、底版反力、堤体自重、杭頭モーメント、杭の軸力、地震時慣性力、動水圧を考慮する。
- (2) 荷重の組合せおよび荷重係数は、吊上げ時、施工時、完成時(静穏時、波力作用時) 地震時について適切に設定する。
- (3) 終局限界状態の検討に用いる荷重の特性値は、設計で対象とする再現期間における荷重の最大値、あるいは構造物の施工中および設計供用期間中に生じる最大荷重の期待値とする。
- (4) 使用限界状態の検討に用いる荷重の特性値は、構造物の施工中および設計供用期間中に比較的しばしば生ずる大きさのものとし、検討すべき限界状態および荷重の組合せに応じて定める。
- (5) 疲労限界状態の検討に用いる荷重の特性値は、構造物の設計供用期間中の荷重の変動を考慮して定める。
- (6) 限界状態設計法による部材性能の照査において考慮する荷重の組合せ、各荷重の特性値に乗じる荷重係数は、表 5(出典:技術基準(平成11年制定)p.367)に示す値を用いることができる。

代 6 内主の旭日とと内主が奴								
状態	自 重	静水圧	常時の 底版反力	地震時の 底版反力	底版反力 変動分	波力	杭頭モーメント・ 杭軸力	備考
常時(静穏時)	0.9 (1.0)	1.1 (1.0)	1.1 (1.0)	-	-	-	-	底版 フーチング
	1.1[0.9]	1.1[0.9]	1.1[0.9]	_	1.2[0.8]	1.3	1.2[0.8]*	底版
波力	(1.0)	(1.0)	(1.0)		(1.0)	(1.0)	(1.0)*	フーチング゛
作用時	-	-	-	-	-	1.3	-	側壁・隔壁・
施工時・	1.1	1.1	-	-	-	-	-	底版
地震時	1.0	1.0	-	1.0	_	_	1.0*	底版
2,20	(-)	(-)		(-)			(-)	フーチング゛

表 - 5 荷重の組合せと荷重係数

表の()内の数値は使用限界状態

表の[]内の数値はその荷重を小さく考えた方が設計荷重が大きくなる場合に用いる荷重係数

3.3.4 許容ひび割れ幅

部材表面の許容ひび割れ幅 w_a は、構造物の使用目的、環境条件、部材の条件等を考慮して定めることを原則とする。

〔解 説〕

鋼材の腐食に対する許容ひび割れ幅 w_a は、一般に環境条件、かぶりの厚さ c (cm)に応じて表 - 6 のように定めてよい。ただし、適用できるかぶり厚さは、10cm 以下を標準とする。

表 - 6 許容ひび割れ幅

a)海水に直接接する部分、海水で洗われ	0.0035c
る部分、及び激しい潮風を受ける部分	0.00350
b)上記以外の部分	0.0040c

3.3.5 鉄筋かぶりの考え方

鉄筋のかぶりは、コンクリートの品質、鉄筋の直径、構造物の環境条件、施工誤差、構造物の 重要度等を考慮して適切に定めるものとする。

〔解 説〕

(1) 鉄筋の最小かぶりは、表 - 7に示す値を標準とする。

表 - 7 鉄筋のかぶりの標準値

a)海水に直接接する部分、海水で洗われ	7cm
る部分及び激しい潮風を受ける部分	<i>I</i> CIII
b)上記以外の部分	5cm

かぶり:鉄筋の表面とコンクリート表面の最短距離で計ったコンクリートの厚さ

(2) 塩化物イオンに対する鋼材腐食について照査する場合は、表 - 7 のかぶりの標準値を小さくすることができる。

3.3.6 各限界状態の考慮すべき荷重

各限界状態の検討にあたっては、設計供用期間中に作用する荷重を適切に設定するものとする。

〔解 説〕

各限界状態の考慮すべき荷重は表 - 8 を標準とする。

表 - 8 各限界状態の考慮すべき荷重

			終局限界状態	使用限界状態	疲労限界状態
		自重			
		波力			
	波力作用時	底版反力			
		杭頭モーメント			
		杭の軸力			
完成時	地震時	自重		-	-
		地震慣性力		-	-
		動水圧		-	-
		底版反力		-	-
		杭頭モーメント		-	-
		杭の軸力		-	-
施工時	吊上げ時	自重			-

3.4 設計荷重の算定

各部材に作用する荷重は、それぞれの荷重状態に対して各荷重を重ね合わせ、一般には、これを台形分布荷重等に換算して設計荷重としてもよい。

〔解 説〕

軟着堤の細部設計に用いる設計荷重としては、波力、動水圧、自重、底版反力、杭頭モーメント、杭の軸力等を考慮する。

[参考]

- (1) 鉛直壁に作用する波力については、水理特性を考慮し適切に算出しなければならない。熊本港で検討された代表的な構造形式である「逆T型」と「逆型」の細部設計に用いる波力は、水理模型結果より図-35に示すように設定された。
- (2) バットレスに作用する水平波力については、 $P = 0.8\omega_0 H_D$ の等分布荷重とした。
- (3) 鉛直波力、底版反力および動水圧については、基本設計で算出されたものを用いた。
- (4) 自重については、**技術基準(平成 11 年制定) 第 2 編 第 1 5 章**に示す単位体積重量を用いて 算定した。
- (5) 杭頭モーメントおよび杭の軸力は基本設計で算出されたものを用いた。

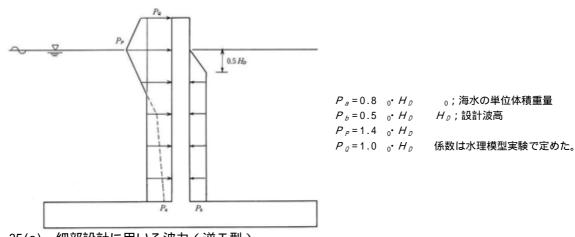
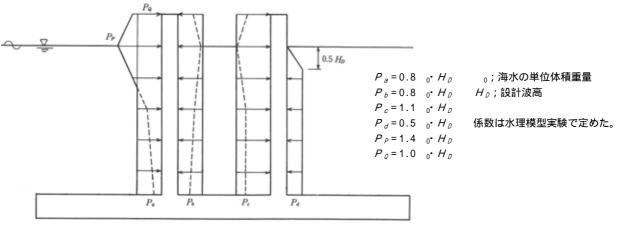
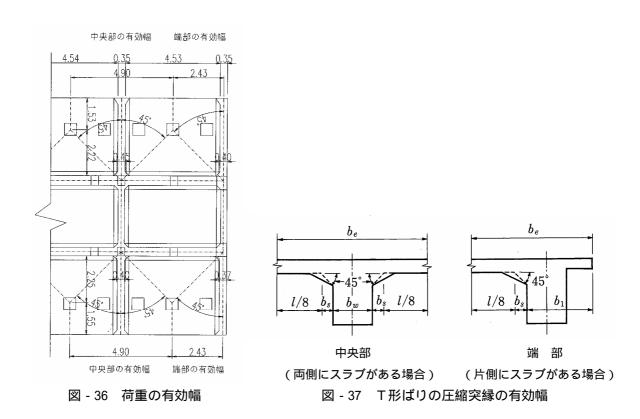


図 - 35(a) 細部設計に用いる波力(逆T型)




図 - 35(b) 細部設計に用いる波力(逆型)

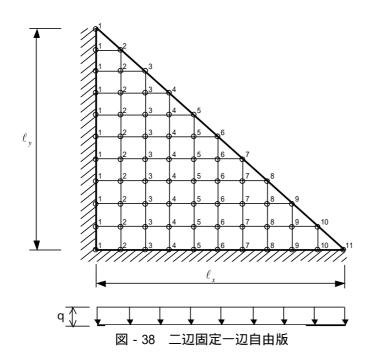
3.5 断面力の算定

軟着堤の安全性と使用性の照査において、各部材に生じる断面力の算定は、適切な解析モデル を設定して行うものとする。

〔解 説〕

- (1) 鉛直壁(逆 型の場合、前壁、後壁、側壁および隔壁)の断面力は、三辺固定一辺自由版(**技 術基準** 参照)の計算図表を用いて算出してよい。
- (2) バットレス
 - 1) バットレスの軸方向の断面力は、底版からの反力に対し、直立壁で支持されるT形断面の片持 梁として算出してよい。そのときの断面力を算定するときの荷重の分担幅については、図 - 36 に示し、T形ばりの圧縮突縁の有効幅については、(式 - 27)(式 - 28)に示す。

・中央部(両側にスラブがある場合)の有効幅(図-37参照)


$$b_{e} = b_{w} + 2(b_{e} + l/8)$$
 (式 - 27)

・端部(片側にスラブがある場合)の有効幅(図-37参照)

$$b_e = b_1 + b_s + l/8$$
 (式 - 28)

ここに、lは、単純ばりではスパン、片持ばりでは純スパンの 2 倍とする。

2) バットレスの側面に作用する水平波力による断面力は、有限要素法(版解析)などの適切な方法によって算定するのが望ましいが、表 - 9 に示す二辺固定一辺自由版の計算図表を用いて曲げモーメントを算出してよい。バットレスの側面に作用する水平波力による曲げモーメントは、表 - 9 に示す係数を用いて(式 - 29)または(式 - 30)により算出する。なお、表 - 9 の計算図表の解析モデルを図 - 38 に示す。

1 の場合

$$M_{x} = Xq\ell_{x}^{2}$$

$$M_{y} = Yq\ell_{x}^{2}$$
(式 - 29)

>1 の場合

$$M_{x} = Xq\ell_{y}^{2}$$

$$M_{y} = Yq\ell_{y}^{2}$$
(武 - 30)

ここに、 : 辺長比 = ℓ_x/ℓ_y

 $M_{x^{\backprime}}$ M_{y} : 求める点でのx方向、y方向の曲げモーメント (kN · m/m)

X、Y: 求める点でのx方向、y方向の曲げモーメント係数

 ℓ_{x} 、 ℓ_{y} : x方向、y方向の長さ(m)

q:等分布荷重の場合の荷重強度(kN/m²)

表 - 9(a) 二辺固定一辺自由版の計算図表

	曲げモ ーメン ト係数	座標	1	2	3	4	5	6	7	8	9	10	11
	1.2.7.4		0.0010										
			-0.0114	-0.0044									
			-0.0364	-0.0203	-0.0108								
			-0.0653	-0.0380	-0.0214	-0.0129							
			-0.0913	-0.0534	-0.0282	-0.0145	-0.0090						
	Х		-0.1089	-0.0629	-0.0311	-0.0114	-0.0020	-0.0053					
			-0.1131	-0.0637	-0.0290	-0.0065	0.0062	0.0110	0.0089				
			-0.1009	-0.0544	-0.0223	-0.0013	0.0113	0.0175	0.0189	0.0148		-	
			-0.0709	-0.0358	-0.0127	0.0020	0.0107	0.0154	0.0174	0.0176	0.0133	0.0044	
=0.50			-0.0271 0	-0.0136	-0.0048 -0.0043	-0.0001 -0.0083	0.0024	0.0032	0.0036 -0.0165	0.0043	0.0056 -0.0172	0.0041 -0.0141	-0.0056
(等分布				-0.0007	-0.0043	-0.0063	-0.0118	-0.0146	-0.0103	-0.0175	-0.0172	-0.0141	-0.0056
荷重)			0.0002	-0.0032									
			-0.0019	-0.0032	-0.0060								
			-0.0109	-0.0060	-0.0020	-0.0032						 	
			-0.0153	-0.0080	-0.0020	0.0048	0.0060						
	Υ		-0.0182	-0.0000	-0.0014	0.0040	0.0153	0.0188					
			-0.0190	-0.0089	0.0012	0.0106	0.0185	0.0246	0.0285				
			-0.0169	-0.0073	0.0023	0.0110	0.0179	0.0225	0.0245	0.0257			
			-0.0119	-0.0046	0.0019	0.0070	0.0102	0.0113	0.0100	0.0056	0.0018		
			-0.0045	-0.0033	-0.0047	-0.0080	-0.0125	-0.0174	-0.0226	-0.0281	-0.0355	-0.0416	
			0	-0.0074	-0.0269	-0.0491	-0.0693	-0.0856	-0.0969	-0.1022	-0.0995	-0.0844	-0.0333
			0.0013										
			-0.0187	-0.0121									
			-0.0419	-0.0241	-0.0158								
			-0.0607	-0.0323	-0.0174	-0.0102							
			-0.0728	-0.0370	-0.0155	-0.0049	-0.0002						
	Х		-0.0768	-0.0375	-0.0129	0.0010	0.0074	0.0093					
			-0.0722	-0.0337	-0.0094	0.0048	0.0122	0.0151	0.0143				
			-0.0589	-0.0259	-0.0056	0.0062	0.0124	0.0152	0.0160	0.0130			
			-0.0378	-0.0156	-0.0026	0.0045	0.0080	0.0096	0.0102	0.0103	0.0064		
=0.75			-0.0128	-0.0058	-0.0017	-0.0003	-0.0001	-0.0004	-0.0005	-0.0002	-0.0006	-0.0018	
(等分布			0	-0.0010	-0.0042	-0.0073	-0.0099	-0.0116	-0.0124	-0.0121	-0.0106	-0.0073	-0.0010
荷重)			0.0002										
			-0.0031	-0.0043	0.0000								
			-0.0070	-0.0028	-0.0026	0.0047							
			-0.0102	-0.0038	0.0027	0.0047	0.0124						
	Υ		-0.0122 -0.0129	-0.0044 -0.0043	0.0035	0.0106 0.0117	0.0134	0.0189					
	•		-0.0129	-0.0043	0.0043	0.0117	0.0171	0.0189	0.0168				
			-0.0099	-0.0037	0.0040	0.0092	0.0102	0.0178	0.0095	0.0053			
			-0.0063	-0.0027	0.0013	0.0032	0.0026	0.0009	-0.0035	-0.0083	-0.0137		
							-0.0179				-0.0304	-0.0294	
			0.0020	-0.0074	-0.0252	-0.0435	-0.0584	-0.0685	-0.0731	-0.0715	-0.0624	-0.0435	-0.0057
			0										
			-0.0231	-0.0165					İ	1		i	i
			-0.0406	-0.0221	-0.0137							Ī	
			-0.0515	-0.0243	-0.0111	-0.0035							
			-0.0566	-0.0248	-0.0072	0.0015	0.0065						
	Х		-0.0558	-0.0231	-0.0043	0.0056	0.0104	0.0123					
			-0.0497	-0.0194	-0.0020	0.0072	0.0117	0.0135	0.0124				
			-0.0387	-0.0141	-0.0005	0.0065	0.0098	0.0110	0.0111	0.0078			
			-0.0235	-0.0081	0	0.0037	0.0051	0.0055	0.0054	0.0052	0.0013		
=1.0			-0.0074	-0.0031	-0.0011	-0.0010	-0.0014	-0.0018	-0.0020	-0.0018	-0.0012		ļ
=1.0 (等分布			0	-0.0011	-0.0039	-0.0065	-0.0084	-0.0094	-0.0095	-0.0087	-0.0069	-0.0039	0
荷重)			0									<u> </u>	
			-0.0039	-0.0031								<u> </u>	
			-0.0069	-0.0012	0.0013	0 00==		<u> </u>		<u> </u>		 	<u> </u>
			-0.0087	-0.0018	0.0052	0.0078	0.0404					<u> </u>	
	Υ		-0.0095	-0.0020	0.0054	0.0111	0.0124	0.0400				<u> </u>	
	'		-0.0094	-0.0018	0.0055	0.0110	0.0135	0.0123	0.0005	 		-	-
			-0.0084	-0.0014	0.0051	0.0098	0.0117	0.0104	0.0065	-0.0025		 	
			-0.0065 -0.0039	-0.0010 -0.0011	0.0037	-0.0005	-0.0072	0.0056 -0.0043	0.0015 -0.0072	-0.0035 -0.0111	-0.0137	 	
				-0.0011	-0.0081	-0.0005	-0.0020	-0.0043	-0.0072	-0.0111	-0.0137	-0.0165	
			-0.0011										

表 - 9(b) 二辺固定一辺自由版の計算図表

	曲げモ												
	ーメン	座標	1	2	3	4	5	6	7	8	9	10	11
	卜係数												
			-0.0038										
			-0.0384	-0.0266									
			-0.0573	-0.0288	-0.0144								
			-0.0670	-0.0279	-0.0094	0.0028							
			-0.0695	-0.0263	-0.0038	0.0075	0.0145						
	Х		-0.0657	-0.0231	-0.0004	0.0109	0.0163	0.0177					
			-0.0565	-0.0184	0.0015	0.0111	0.0153	0.0166	0.0136				
			-0.0425	-0.0128	0.0020	0.0087	0.0113	0.0117	0.0110	0.0057			
			-0.0249	-0.0072	0.0010	0.0041	0.0048	0.0047	0.0041	0.0033	-0.0017		
=1.25			-0.0074	-0.0030	-0.0016	-0.0022	-0.0031	-0.0037	-0.0038	-0.0034	-0.0025	-0.0042	
(等分布			0	-0.0018	-0.0057	-0.0091	-0.0112	-0.0121	-0.0117	-0.0099	-0.0071	-0.0033	0.0002
荷重)			-0.0006										
			-0.0065	-0.0023									
			-0.0098	0.0001	0.0052								
			-0.0114	-0.0007	0.0091	0.0120							
			-0.0117	-0.0009	0.0091	0.0150	0.0143						
	Υ		-0.0111	-0.0008	0.0086	0.0144	0.0150	0.0104					
			-0.0096	-0.0005	0.0074	0.0119	0.0123	0.0083	0.0015				
			-0.0072	-0.0004	0.0044	0.0065	0.0057	0.0023	-0.0034	-0.0090			
			-0.0041	-0.0015	-0.0018	-0.0041	-0.0074	-0.0107	-0.0136	-0.0161	-0.0158		
			-0.0100	-0.0051	-0.0136	-0.0228	-0.0301	-0.0341	-0.0342	-0.0307	-0.0240	-0.0133	
			0	-0.0114	-0.0342	-0.0539	-0.0668	-0.0720	-0.0693	-0.0590	-0.0420	-0.0198	0.0012
			-0.0110										
			-0.0543	-0.0345									
			-0.0727	-0.0331	-0.0112								
			-0.0804	-0.0294	-0.0055	0.0108							
			-0.0802	-0.0261	-0.0005	0.0138	0.0213						
	Х		-0.0737	-0.0218	0.0036	0.0156	0.0207	0.0204					
			-0.0618	-0.0167	0.0048	0.0142	0.0175	0.0176	0.0122			-	
			-0.0453	-0.0113	0.0041	0.0101	0.0118	0.0112	0.0095	0.0024	0 0044		
			-0.0258	-0.0063	0.0017	0.0039	0.0040	0.0033	0.0023	0.0012	-0.0041	0.0040	
=1.50			-0.0074	-0.0030	-0.0024	-0.0038	-0.0050	-0.0056	-0.0055	-0.0046	-0.0033 -0.0069	-0.0042	0.0000
(等分布			0	-0.0026	-0.0077	-0.0117	-0.0140	-0.0145	-0.0133	-0.0106	-0.0069	-0.0027	0.0002
荷重)			-0.0018	0.0005									
			-0.0091	-0.0005	0.0007								
			-0.0125	0.0018	0.0087	0.0445							
			-0.0137	0.0008	0.0126	0.0145	0.0407					-	
	Υ		-0.0136	0.0005	0.0124	0.0175	0.0137	0.0067	-			-	
	'		-0.0125	0.0005	0.0114	0.0165	0.0147	0.0067	0.0000			-	
			-0.0105	0.0006	0.0092	0.0129	0.0113	0.0051	-0.0033	0.0404	-	-	-
			-0.0076	0 0000	0.0044	0.0050	0.0026	-0.0020	-0.0079	-0.0121	0.0154		-
			-0.0043	-0.0023	-0.0046	-0.0092	-0.0140	-0.0177	-0.0195	-0.0194	-0.0151	0.0007	-
			-0.0009	-0.0075	-0.0202	-0.0328	-0.0414	-0.0447	-0.0423	-0.0349	-0.0238	-0.0097	0.0014
			0	-0.0160	-0.0458	-0.0696	-0.0833	-0.0864	-0.0792	-0.0633	-0.0410	-0.0164	0.0014

- (3) 底版の断面力は、四辺固定版(技術基準 参照)の計算図表を用いて算出してよい。
- (4) フーチングの断面力は、バットレス、直立壁、側壁で支持される三辺固定一辺自由版(**技術基準** 参照)の計算図表を用いて算出してよい。ただし、杭頭モーメントおよび杭の軸力による断面力については、版解析(2次元)と格子桁解析(2次元)は同様な結果を示すため、比較的簡便な格子桁解析(2次元)で算出し、その結果を三辺固定一辺自由版で算出した断面力に加算するものとする。

[参考]

熊本港では、格子桁解析(2次元)の解析モデルを以下に示す条件で設定した。

格子桁の梁幅については、できる限り細かく設定した方が曲げモーメントの極大値を押さえることができる。しかし、梁を杭幅より小さく設定すると荷重が集中荷重の場合、過大な極大値が算出されるため、梁は杭幅より小さく設定しないこととした。

X方向梁とY方向梁の幅については、概ね等しくなるように設定した。なお、X方向梁とY方向梁の定義については図 - 39 に示す。

梁幅はすべて同じ幅に設定するのが望ましいが、固定端周辺の曲げモーメントは小さいため、固定端に接する梁については、同じ梁幅に設定しなくてよいこととした。

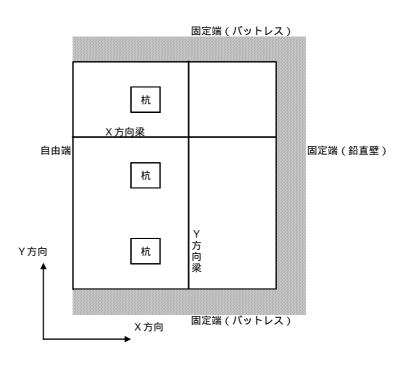


図 - 39 モデル設定条件

3.6 部材の検討

- (1) コンクリート構造物が、設計供用期間中にわたり終局限界状態、使用限界状態および疲労限界 状態に達しないことを確認するものとする。
- (2) 終局限界状態に対する検討は、設計断面力 S_a の設計断面耐力 R_a に対する比に構造物係数 γ_i を乗じた値が 1.0 以下であることを確かめることによって行う。

$$\gamma_i S_d / R_d = 1.0$$
 (式 - 31)

- (3) 使用限界状態に対する検討は、その限界状態における荷重の設計用値により生じる部材のひびわれ幅wが許容ひびわれ幅w。以下となることを確かめることによって行う。
- (4) 疲労限界状態に対する検討は、コンクリート及び鋼材の両者に対して行うものとする。

〔解 説〕

(1) 終局限界状態に対する検討において、設計断面耐力 R_d は、設計強度 f_d を用いて部材断面の耐力 R (R は f_d の関数) を算定し、これを部材係数 γ_b で除した値とする。

$$R_d = R(f_d)/\gamma_b \tag{ \vec{\pm} - 32)}$$

(2) 終局限界状態に対する検討において、設計断面力 S_d は、設計荷重 F_d を用いて断面力 S (S は F_d の関数) を算定し、これに構造解析係数 γ_a を乗じた値を合計したものとする。

$$S_d = \sum \gamma_a S(F_d) \tag{ \vec{\pi} - 33}$$

(3) 使用限界状態に対する検討は、(式 - 34) により算出されたひびわれ幅 w (**技術基準 第3章 平成 11 年度制定**) が本マニュアルの 3.3.4 に示す許容ひびわれ幅 w_a 以下となることを確かめることによって行う。

$$w = k \cdot \left\{ 4c + 0.7 \cdot \left(c_s - \phi \right) \right\} \cdot \left[\frac{\sigma_{se}}{E_s} + \varepsilon'_{csd} \right]$$
 (\pi - 34)

ここに、k:鋼材の表面形状がひび割れ幅に及ぼす影響を表す係数で、一般に、異 形鉄筋の場合に1.0、普通丸鋼およびPC鋼材の場合に1.3としてよい。

c:かぶり(cm)

 c_{c} :鋼材の中心間隔(cm)

 ϕ :鋼材径(cm)

 σ_{se} :鋼材位置のコンクリートの応力度が0の状態からの鉄筋の増加引張応力度 (N/mm^2)

 E_c :鋼材のヤング係数(N/mm²)

 ε'_{csd} : コンクリートの乾燥収縮およびクリープによるひび割れ幅の増加を考慮するための数値。(海中部では ε'_{csd} = 0、それ以外では150×10-6としてよい)

4. 構造細目

4.1 コンクリート部材

コンクリート部材の構造細目については、コンクリート示方書によることを標準とする。

4.2 杭頭部

杭と底版の連結部については、設定した杭頭固定度を満足するような構造とする。

〔解 説〕

杭に生じる最大曲げモーメントの観点から杭頭固定条件が杭頭固定と杭頭自由の中間にあると 有利になる。そのため、杭頭をピンやヒンジ構造としないことが望ましい。

[参考]

- (1) 熊本港における現地実証試験では、杭頭固定となるように設定した杭頭固定構造でも結果的には杭頭固定とならなかったことが確認された 4)。
- (2) 熊本港における杭と底版の連結部の施工事例を図 40 に示す。熊本港では、金具を杭1本当たり2箇所とし、ピンが抜け落ちないようにダブルナットで固定している。
- (3) 熊本港では、13工区の堤体の金具に対して逆解析を行い、Hmax で算出した杭軸圧縮力を対象に金具荷重不均等係数を K=1.8 と設定している。ただし、Hmax 以外の荷重で算出した杭軸圧縮力で設計を行う場合は、別途、金具荷重不均等係数を設定しなければならない。

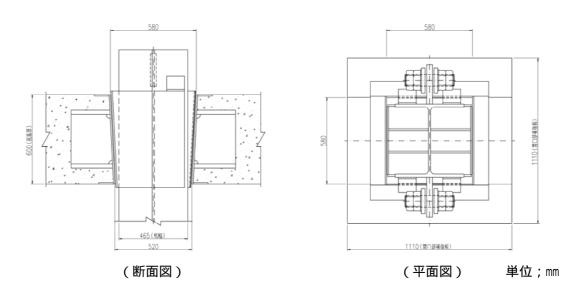


図 - 40 杭頭部の施工事例

5. 設計・施工上の留意点

5.1 沈下に対する考え方

軟着堤の沈下量の推定にあたっては、その特徴を十分考慮して行うものとする。

〔解 説〕

- (1) 沈下量の推定については、**技術基準(平成11年制定) 第5編 第5章** によることを標準と する。
- (2) 表層付近における土質定数(初期間隙比、圧密降伏応力、圧縮指数、体積圧縮係数等)については、サンプリング・試料運搬・試験作業の影響を受けやすく精度が悪くなるため、土質試験結果を適切に評価する。
- (3) 杭の根入れ長が沈下量の推定に影響を与える長さのときは、別途、数値解析や実証試験を行って適切に杭の影響を評価する。

[参考]

(1) 熊本港では、即時沈下と圧密沈下を考慮して(式 - 35)により沈下量S を算定し、既設軟着堤 (杭の根入れ長5m 程度)の実測沈下量と比較的合致していることが確認された。このときの沈下計算において、杭の影響は無いものとした。

$$S = S_{(1)} + S_{(2)} + S_{(3)}$$
 (式 - 35)

ここに、 $S_{\scriptscriptstyle (1)}$:据付直後の即時沈下量

 $S_{(2)}$:据付後 1 日間の即時沈下量

 $S_{\scriptscriptstyle{(3)}}$: 圧密による沈下量

- 1) 即時沈下については、堤体据付直後ならびに据付後1日間に生じる沈下を考慮した。
 - a) 据付直後の即時沈下量 $S_{(1)}$

表層土質が細粒分含有率 F_c 15 の場合は過去の実測値より5cm とした。

表層土質が細粒分含有率 F_c < 15 の場合は図 - 41 に示す非常にゆるい砂として算出した。

このときの土層については、圧密沈下計算は行っていない。

b) 据付後 1 日間の即時沈下量 $S_{(2)}$:施工方法と地盤の特徴に留意して熊本港では $5 \, \mathrm{cm}$ とした。

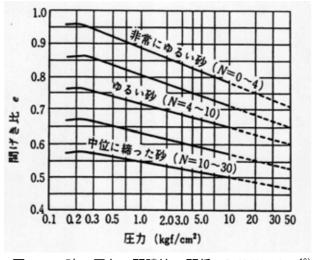


図 - 41 砂の圧力~間隙比の関係(B.K.Hough)¹⁰⁾

- 2) 圧密沈下の算定において、各土質定数の信頼性を検討した結果、以下に示す方法が熊本港における既設軟着堤(杭の根入れ長が5m程度)の実測沈下量と比較的良く合致した。
 - a) 熊本港では、圧密による沈下量の算定を技術基準に示されている方法のうち、圧縮指数 C_c から求める方法を採用した。そのときの初期間隙比 e_0 、圧密降伏応力 p_0 および圧縮指数 C_c については、以下のように設定した。

初期間隙比 e_0 については、含水比と土粒子の密度から算出した(図 - 42、43 参照)。 圧密降伏応力 p_0 については、圧密試験による p_c 、土被り重量 p_h 、圧縮曲線上の値 p_{0o} を比較した結果、 p_c の信頼性が低いため、ここでは含水比と土粒子の密度から算出した初期間隙比 e_0 と圧密試験による圧縮指数 C_C により求めた p_{0o} を p_0 として設定した(図 - 42 参照)。

圧縮指数 C_c の信頼性が低い場合、または、砂分の多い粘性土層(60 F_c 15 の範囲を対象とする)において圧縮指数 C_c が得られない場合には、近くの土層の定数を参考にするとともに全体的な土質調査結果より求めた細粒分含有率 F_c と圧縮指数 C_c の関係図(図 - 44)から推定した。

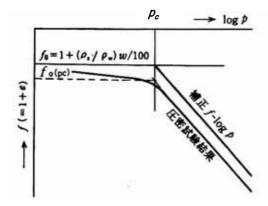


図-42 圧縮曲線の補正方法(高田)11)

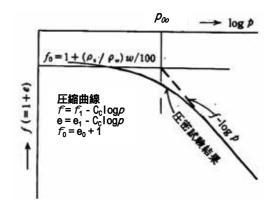


図 - 43 $e_{\scriptscriptstyle 0}$ 、 $C_{\scriptscriptstyle C}$ による $p_{\scriptscriptstyle 0o}$ の設定

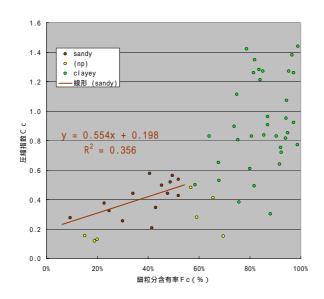


図 - 44(a) $F_c \geq C_C \geq 0$ 関係図

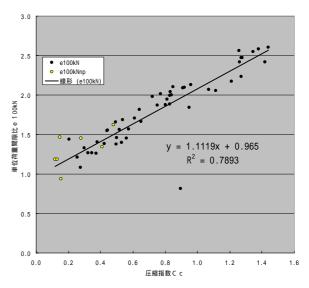


図 - 44(b) Ccとe100kNとの関係図 (P=100kN/m² 1kgf/cm²)

b) 圧密による沈下量 $S_{(3)}$ は、(式 - 36) により算出した。このときの間隙比は物理試験から求めた含水比より算出した。また、圧密沈下計算を行うのは、細粒分含有率 (F_c) 15 の土層を対象とした。

$$S_{(3)} = h \times \frac{e_0 - e_f}{1 + e_0} \tag{ \vec{\pi} - 36 }$$

ここに、 $S_{\scriptscriptstyle{(3)}}$: 圧密による沈下量(m)

h:層厚(m)

 e_0 : 含水比から算出した初期間隙比($e_0=w_0^{ullet}$ ρ_s / $\left(S_r^{ullet}$ $\rho_w\right)$)

w₀:含水比(%)

S,: 飽和度(=100%)

 $\rho_{\rm c}$: 土粒子密度(g/cm³)

 ρ_{w} :海水密度(g/cm³)

 e_f : 圧密後の間隙比

圧密後の間隙比は、圧縮曲線 $e=e_{100kN}-C_C\log(p/100)$ に対して、前述の a) のように e_0 、 p_0 を設定すれば、圧密後の間隙比 e_f は(式 - 37)により算出される。ただし、物理試験より求めた含水比と圧密試験により求めた含水比が大きくかけ離れた場合には、近くの土層の定数を参考に適切に再設定する必要がある。

ここに、 C_{c} : 圧密試験から得られる圧縮指数

 Δp :增加重量(kN/m²)

 p_0 :含水比からの計算値 e_0 より算出した圧密降伏応力(kN/m^2)

含水比からの計算値 e_0 より算出した圧密降伏応力 p_0 は、(式 - 38)により算出した。ただし、 p_0 が土被り重量 p_n と大きくかけ離れた場合には、物理試験の試料と圧密試験の試料のどちらか、もしくは両方が圧密計算を行う土層の代表値と異なることが考えられる。このときは、近くの土層の定数を参考に適切に再設定する必要がある。

$$p_0 = 100 \times 10^{\frac{e_{100kN} - e_0}{C_C}}$$
 (\pm - 38)

ここに、 $e_{100k\!N}$: 圧密試験における $p=100\,k\!N/m^2-1\,k\!g\!f/cm^2$ に対応する間隙比

(2) 熊本港の既設軟着堤(杭の根入れ長が5m程度)の沈下量実測値と沈下予測式による沈下量との 比較結果を表 - 10、図 - 45(圧密沈下量 S₍₃₎のみの比較)に示す。なお、熊本港全体から表した 沈下量算出位置を図 - 46、47に示す。

表 - 10 実測値と沈下予測式との最終沈下量比較結果

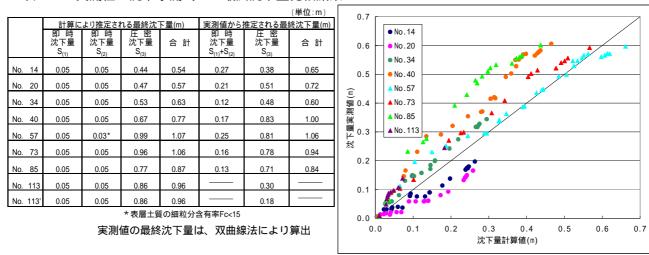


図 - 45 既設軟着堤沈下量の経時実測値と計算値の比較

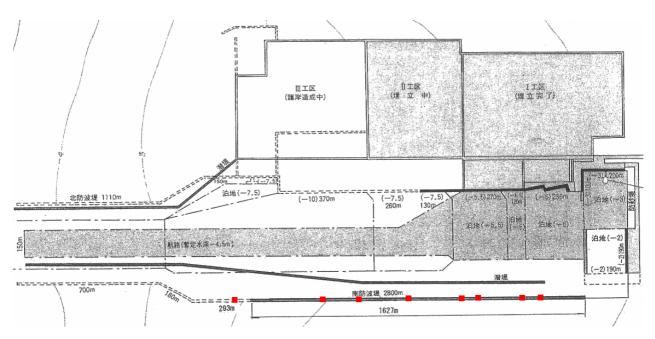


図 - 46 沈下量算出位置図 (:沈下量算出位置)

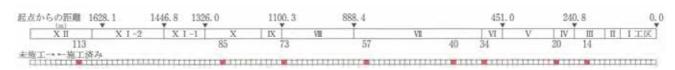


図-47 沈下量算出位置図(拡大)

(3) 圧密沈下予測式については、圧密試験における降伏応力の信頼性の問題から、圧密試験計測値である圧縮指数 C_c ならびに単位荷重間隙比 e_{100kN} ($p=100\,kN/m^2-1kgf/cm^2$) の値を用いて、自然含水比 w_0 から、初期間隙比 e_0 、さらに圧密降伏応力 p_0 を算出し、荷重増加後の応力(p_0 + p) での間隙比 e_f を求め、 $\Delta e=e_0-e_f$ から沈下量を算出する方法が熊本港における既設軟着堤の実測沈下量と比較的よく合致している。圧密沈下計算に用いる圧縮指数 C_c は、圧密試験によることを原則とするが、表層付近では圧縮指数 C_c の算出が困難であったり、すべての地点においては圧密試験が行われていない等の問題がある。このような場合にも圧密沈下計算が可能となるように、細粒分含有量 F_c から圧縮指数 C_c ならびに単位荷重間隙比 e_{100kN} を算出する関係式を図 - 44 に示した。

圧密試験結果から十分な値を得られない土層の圧縮指数 C_c や単位荷重間隙比 e_{100kN} の算出のためのパラメータとして細粒分含有率 F_c を選択したのは、以下の理由による。

土性が同一とみなせる土については、圧密経緯に拘わらず、液性限界 W_L や細粒分含有率 F_c は一定で、圧縮指数 C_C はほぼ同一の値となる。

地盤の生成過程が近似している小地域内においては、 $W_L \sim C_C$ 間には相互に相関性が高い。 圧縮指数 C_C と単位荷重間隙比 e_{100kN} の相関も極めて高い。

ほとんどの土層において、液性限界 W_L は計測されているがNPとなったものについては推測が不可能となる。

これに対し、細粒分含有率 F_c については、ほぼすべての土層について観測されている。 圧密試験結果から、圧縮指数 C_c 等の土質定数が得られないのは、概ね細粒分含有量 F_c の小さな浅い層である。

細粒分含有率 F_c が60%以下の土層については、 $F_c \sim W_L$ の相関性が高い。

圧密沈下計算は、圧密試験の結果(C_C 、 e_{100kN})が利用できる場合には、これを利用する。試験によっても明瞭な圧縮指数 C_C 等が得られない場合には、細粒分含有量 F_c から算出するが、これは統計的な処理に基づいている。この統計的手法によると、場合によっては、各土質定数の相互関連が常識の範囲外となることがある。この原因は、土質ならびに試験結果の「バラツキ」(試験項目ごとの試料が同一ではない)による。特に、各土質定数相互関連が問題となるのは、単位荷重間隙比(e_{100kN})と自然含水比等(w_0 や e_0)である。自然含水比 w_0 等は圧密過程によって異なるものであり、圧縮指数 C_C や単位荷重間隙比 e_{100kN} と理論的には独立ではある。しかし、当地域においては w_0 と圧縮指数 C_C や単位荷重間隙比 e_{100kN} との相関関連が強く、この整合性を図る必要がある。したがって、本マニュアルに示した手法によって、 e_{100kN} 、 e_0 の関係に大きな隔たりがある場合には、図 - 48、図 - 49 に示す図式を用いて、自然含水比 w_0 から圧縮指数 C_C ならびに単位荷重間隙比 e_{100kN} を算出し、総合的判断を行って土質定数を決定する必要がある。

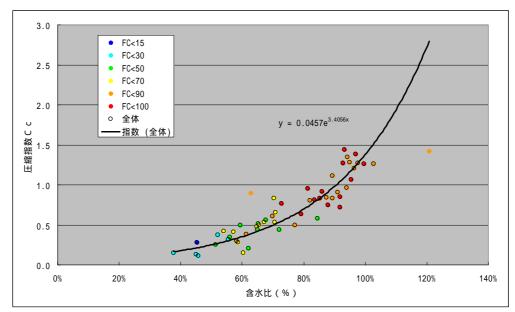


図 - 48 含水比 w_0 と圧縮指数 C_C の関係

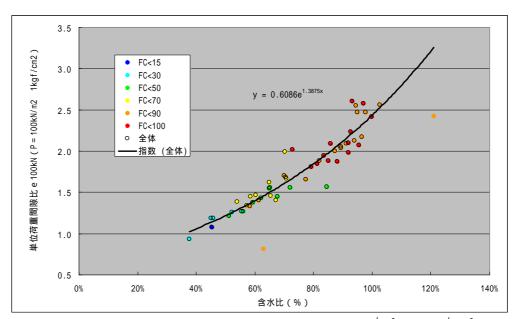


図 - 49 含水比 w_0 と単位荷重間隙比の関係($p=100\,kN/m^2-1kgf/cm^2$)

5.2 基本設計における比較検討の留意点

軟着堤の基本断面については、杭諸元の最小化と堤体幅の最小化は同時に満足できないため、 杭諸元と堤体幅に関する比較検討を行って、最適な断面を選定する。

〔解 説〕

従来設計法では、杭の付着力による堤体鉛直支持力への影響を考慮していなかったため、杭頭 モーメント反力が最小となるように必要最小限の杭長を設定すると、堤体幅もそれに応じて最小 となる。また、剛な杭という設計上の制約から、杭長が短いほど所要杭断面も小さくなる。

しかし、本マニュアルに示す設計法では、杭の付着力増大が堤体鉛直支持力の増大に寄与する ため、杭断面や杭長の増加により所要堤体幅が縮減するという現象が生じる。逆に、十分な堤体 鉛直支持力をもつ堤体幅があれば、杭付着の効果への期待も小さくなり、杭諸元の減少が図れる。

このように杭諸元の最小化と堤体幅の最小化は同時には満足できず、経済的な断面を決定するためには、適切な杭諸元と堤体幅を選択する必要がある。

5.3 洗掘防止対策

軟着堤では洗掘防止対策を行うものとする。

[参考]

熊本港では、洗掘防止対策として厚さ 5cm のアスファルトマットを敷設し、洗掘防止効果があったことを確認している。アスファルトマットの設置範囲は、直立壁から半波長の長さ、もしくは、海底面から $1/3\ell_{\rm ml}$ の深さにおいて 45°の角度で立ち上げた直線と海底面の交点のうち大きい方で決定されている。

熊本港での洗掘防止対策の施工例を図 - 50 に示す。

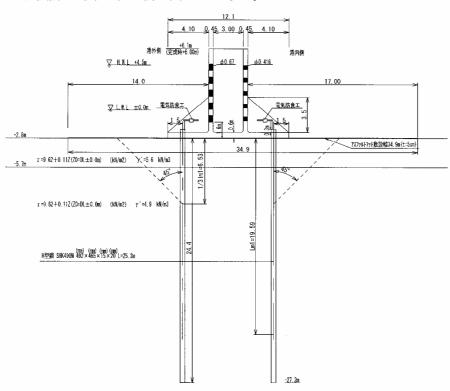


図 - 50 洗掘防止対策の施工例

5.4 目地部

目地部には、破損対策を実施するものとする。

[解説]

長杭式の軟着堤は、杭の変位を許容しているため、法線平行方向の波により、堤体同士がぶつかり破損する恐れがある。このため、破損対策として堤体間の目地間隔を大きくとるか、目地部にクッション材(木材等)を設置するものとする。

[参考]

熊本港では、法線平行方向への堤体の変位量を算出し、変位量以上の目地間隔で堤体を据え付けることとした。

〔参考文献〕

- 1)下関調査設計事務所:軟着底式防波堤実用化試験解析 報告書、昭和63年3月、p.93
- 2) 沢口正俊: 杭の横抵抗における地盤常数に関する研究、港湾技術研究所報告 Vol.7 No.2、1968、pp.65-91
- 3) 菊池喜昭: 軟弱粘性土地盤着底式くし型構造物の横抵抗特性に関する研究、港湾空港技術研究所 資料 No.1039、2003、192p.
- 4)菊池喜昭: 平成 14 年度 港湾空港技術講演会 講演集、港湾空港技術研究所、平成 14 年、pp.39-56
- 5) Vaughan, P.R., M.K. El Ghamrawy, M.M. Hamza, and D.W. Hight: Stability Analysis of Large Gravity Structures, Behavior of offshore structures, BOSS '76, 1976, pp.467-480
- 6) Davis, E.H. and J.R. Booker: The effect of increasing strength with depth on the bearing capacity of clays, Geotechnique 23, No. 4, 1973, pp. 551-563
- 7) 菊池喜昭, DEVELOPMENT OF DESIGN METHOD FOR A SOFT LANDING BREAKWATER WITH PILES, Recent Developments of Geotechnical Engineering in Soft Ground, Pro. of the 2nd China-Japan Geotechnical Symposium, 2005, pp.533-540.
- 8) Meyerhof, G.G.: Some recent research on the bearing capacity of foundations. Can. Geotech. J., Vol.1, 1963, pp.16-31
- 9) 森満賢治・横田弘・松渕知:ケーソン配筋計算の自動化(その4)- 限界状態設計法-、港湾技研資料 No.913、1998、pp.65-68
- 10) 土質工学会: 土質工学ハンドブック、1982 版、p.148
- 11) 地盤工学会: 土質試験の方法と解説 第一回改訂版、平成 13 年、pp.379-380

(参考資料)

- 目 次 -

1.基本設計の骨格となった実証試験結果の概	要 1
1.1 実証試験の概要	1
1.2 杭頭固定度と杭の荷重分担係数	2
1.3 地盤反力係数の求め方	19
1.4 杭の付着力について	21
1.5 荷重の繰返しに対する地盤反力係数の変	5化 24
2 . 基本設計実施のための参考事例計算	30
2.1 設計条件の整理	30
2.2 比較検討の事例	31
2.3 安定検討の事例	32
2.3.1 外力の計算	33
2.3.2 考慮すべき荷重と設計合力	46
2.3.3 安定検討	46
2.4 従来設計法との比較	59
3 . 細部設計実施のための参考事例計算	60
3.1 設計条件の整理	60
3.1.1 一般条件	60
3.1.2 荷重条件	60
3.1.3 施工条件	60
3.1.4 使用材料	60
3.1.5 部分安全係数	60
3.1.6 構造寸法図	60
3.2 設計波の整理	62 tru
3.2.1 終局限界状態に対する設計波浪の割	
3.2.2 使用限界状態に対する設計波浪の	
3.2.3 疲労限界状態に対する設計波浪の掌	
3.3 各部材に作用する外力の検討	69
3.3.1 安定計算結果のまとめ	69
3.3.2 各部材に作用する外力の計算	72
3.3.3 疲労限界状態の外力の計算	94
3.4 各部材の断面力の算定	103
3.4.1 終局限界状態	103
3.4.2 使用限界状態	160
3.5 各位部材の安全照査	19:
3.5.1 終局限界状態	199
3.5.2 使用限界状態	210
3.6 疲労限界状態に対する検討	217
3.7 杭頭固定金具の検討	250
3.8 図面の作成	25

4.施	工事例	 265
4.1	一般	 265
4.2	堤体製作	 266
4.3	堤体据付	 267
4.4	鋼杭	 270
4.5	洗掘防止対策	 271
4.6	施工の歴史	 272

1.基本設計の骨格となった実証試験結果の概要

1.1 現地実証試験の概要

(1) 現地実証試験

熊本港で行われた現地実証試験は、地盤・杭の基本的な挙動特性を確認するための単杭(根入長25m)の水平載荷試験(最終載荷重55kN)ならびに実証試験堤(底版幅14.9m×高さ8.9m×奥行き4.8m、杭根入長15m×6本)の水平載荷試験(最終載荷重1,100kN)である。表-1.1.1に現地実証試験の概要を示す。

表 - 1.1.1 現地実証試験の概要

試験ケース	試験体諸元	最終載荷 荷重	調査内容
単杭の水平 載荷試験	杭 H型鋼 1本 H-300×300×10×15 L=25m	55kN	・横方向地盤反力係数の推定を行 うため、杭の水平変位、杭の曲 げモーメント分布を計測した。
堤体の水平載荷試験	実験堤体(実堤体の延長を 1/3) 幅 14.9m×延長 4.8m×高さ 8.9m 杭 H型鋼 6本 H-250×250×9×14 L=15m	1,100kN	・港研方式の適用性ならびに各杭の水平荷重の分担を確認するため、堤体水平変位,杭の曲げモーメント分布を計測した。 ・杭頭固定度の考え方、杭と底版の結合状態等を確認するため、堤体と杭頭の傾斜角を計測した。 ・鉛直支持における底版と杭軸力の関係を把握するため、堤体鉛直変位・傾斜角・底版作用土圧・杭軸力を計測した。

なお、試験データは、「熊本港(本港地区)防波堤(南)築造工事 防波堤(南)高度化実証試験結果報告書 平成14年9月 国土交通省九州地方整備局熊本港湾空港工事事務所」を用いた。

(2) 現地実証試験結果の概要

現地実証試験の整理・分析の結果概要を以下のとおり示す。

1) 単杭載荷試験

- a) 港研方式の適用性
 - ・試験の各荷重段階において杭に発生した曲げモーメント分布は、港研方式による計算値 とよく合致した。
- b) 地盤反力係数の推定
 - ・単杭試験結果から求めた地盤反力係数 k_s は、ベーンせん断試験の結果を用いて沢口の方法 (港湾技術研究所報告,1968)で算出した結果とよく合致した。

2) 堤体載荷試験

- a) 杭頭固定度と各杭の水平力の分担の確認
 - ・単杭試験結果で得られた地盤反力係数を用いて計算した結果と現地計測結果を比較すると、6本の杭の杭頭固定度は R_{fix} 0.6 \sim 0.0の間に分布し、この杭頭固定度によって、杭頭変位、杭頭たわみ角の計測値がよく説明できたことが報告されている。

なお、杭頭固定度の定義は、杭頭発生モーメントを港研方式の頭部固定杭として計算 した杭頭モーメントで除した値である。

b) 底版反力と杭の軸力の確認

- ・水平載荷荷重が大きくなるにつれ、堤体が前傾する側の杭には圧縮力が、反対側の杭に は引張力が発生することが確認されている。
- ・底版反力は、荷重の初期段階では三角形分布を示し、荷重が大きくなるにつれ端趾部分 の地盤に降伏がみられたが、堤体が大きく転倒するような現象は見られなかった。
- c) 繰返し荷重による地盤反力係数の低下の確認
 - ・提案式は平成2年の現地試験結果の再検討に基づくものであるが、単杭試験で10回程度の繰返し載荷を行った挙動変化計測値は提案式で説明できたことが報告されている。

1.2 杭頭固定度と杭の荷重分担係数

(1) 検討概要

従来設計法では杭と底版は剛結されているとして設計を行っているが、実際の杭は港研方式の頭部固定杭として計算した値と頭部自由杭として計算した値の中間的な挙動を示す。中間的挙動を示す杭各部の水平変位、たわみ角、曲げモーメントは、杭頭固定度という概念を用いることにより計算できる。

現地計測結果は、杭頭固定度を考慮した計算結果とよく合致している。そのため、新設計法では、杭頭固定度を考慮して杭の挙動を解析するものとした。また、実験結果では、杭の挙動は各杭によって異なっていたことから、実験計測値とモデルケースを想定した計算値を比較検討し、熊本港における杭頭固定度と杭の荷重分担係数を設定した。

(2) 杭頭固定度を用いた杭の挙動の算定方法

1) 杭頭固定度の定義

杭頭固定度 R_{fix} は、次式のとおり杭頭発生モーメントを港研方式の杭頭固定杭として計算した杭頭モーメントで除した値と定義する。(図 - 1.2.1 参照)

$$R_{fix} = \frac{M_t}{M_{\text{max}-t}}$$

ここに、

M. : 杭頭に生じている曲げモーメント

 M_{\max} : 杭頭固定時に杭頭に生じる曲げモーメント

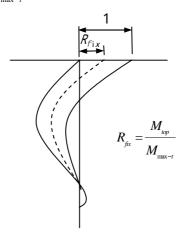


図 - 1.2.1 曲げモーメント図

2) 杭各部の水平変位、たわみ角、曲げモーメントの計算

中間的挙動を示す杭各部の水平変位、たわみ角、曲げモーメントは、杭頭固定度を用いて港研方式の頭部固定杭と頭部自由杭に対する計算結果から計算することができる。

・杭頭固定の場合

$$M_{_{\mathrm{max}-t}}=M_{_{\mathrm{max}}}$$
 $i_{_{top}}=0$ $(y_{_{top}}=y_{_{topfik}}$ とする。)

・杭頭自由の場合

$$M_{top} = 0$$
 $i_{top} = i_{max} (= i_{topfree}$ とする。) $(y_{top} = y_{topfree}$ とする。)

・杭頭固定と杭頭自由の中間の場合

$$R_{fix} = \frac{M_{top}}{M_{max-t}}$$

$$\frac{i_{top}}{i_{topfree}} + R_{fix} = 1$$

$$\frac{y_{top} - y_{topfix}}{y_{topfree} - y_{topfix}} + R_{fix} = 1$$

ここに、

 $M_{\scriptscriptstyle{ ext{max}}}$:最大曲げモーメント

 $i_{\scriptscriptstyle top}$: 杭頭部におけるたわみ角

i___ : 杭頭部における最大たわみ角

i......: 抗頭自由の場合の杭頭部におけるたわみ角

y.... : 杭頭変位

 y_{topfix} :杭頭固定の場合の杭頭変位

y_{toofree} : 杭頭自由の場合の杭頭変位

上記の杭頭固定度 $R_{_{fix}}$ を設定することにより、杭頭曲げモーメント $M_{_{top}}$ 、地中部最大曲げモーメントM、杭頭たわみ角 $i_{_{top}}$ 、杭頭変位 $y_{_{top}}$ を算出することが可能である。

(3) 実証試験結果

単杭試験結果で得られた地盤反力係数を用いて計算した結果と現地計測結果を比較するにあたり、杭頭固定度を考慮すると、杭頭変位、杭頭たわみ角、曲げモーメントの計測値がよく説明できたことが報告されている。そのときの杭頭固定度と各杭の荷重分担については以下のとおりであった。

杭頭固定度は、各杭すべて異なり、 R_{fix} =0.6~0の範囲でばらついている。(図 - 1.2.2 参照)

杭頭固定度が大きい杭ほど分担する荷重は大きくなる。(図 - 1.2.3 参照)

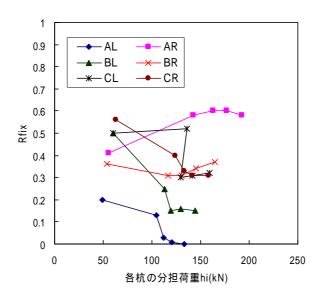


図 - 1.2.2 杭頭固定度と各杭の杭頭荷重の関係

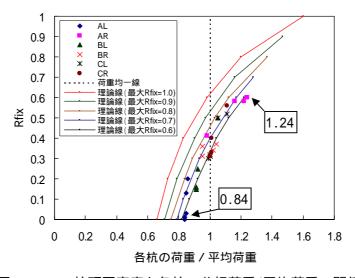


図 - 1.2.3 杭頭固定度と各杭の分担荷重/平均荷重の関係

また、平成2年の実証試験結果の杭頭固定度では、図-1.2.4のとおり

杭頭固定度は、 R_{fix} =0.8~0.4の範囲でばらついている。

杭頭固定度は、平均的に R_{fix} =0.7程度である。

ということが報告されている。ただし、このときの杭頭構造は、頭部固定杭となるようにボルトを用いた強固な構造を想定したものだったが、頭部固定にはならなかった。(引用文献 ; 菊池喜昭:平成14年度 港湾空港技術講演会 講演集、平成14年)

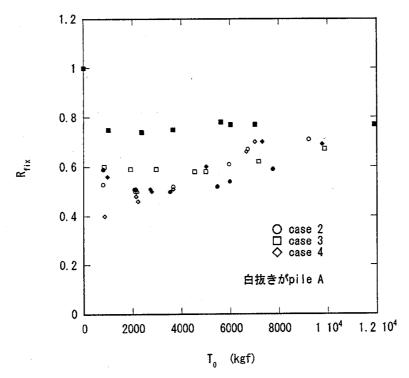


図 - 1.2.4 杭頭固定度と荷重の関係図

・杭頭固定度の上限値の設定

以上の結果から、杭頭固定度は杭頭構造および施工方法によって異なるが、今回の実証試験堤が現地施工に最も近い杭頭構造であり、施工方法にも大きな差異はないと考えられるため、杭頭固定度は今回の実証試験結果から、 $R_{_{fix}}$ =0.6(熊本港)を上限値と設定する。ただし、熊本港で現在採用されている施工方法、杭頭構造と異なる場合は、必要に応じ要素試験等を行って設定することが望ましい。

(4) モデルケースによる各杭の荷重分担

設計に用いる各杭の荷重分担を設定するために、モデルケースによる分析計算を行い、実験結果と比較することにより、杭頭固定度と各杭の荷重分担の関係について検討した。

杭頭固定度と各杭の荷重分担について分析を進めていく上で検討する着眼点は以下のとおりである。

杭頭固定度によって、杭に作用する水平荷重がかわる。この要因は、杭の横方向のバネ定数の違いによるものと考えられる。設計に用いる杭の荷重分担係数を設定するためには、 杭頭固定度、横方向のバネ定数および荷重分担について整理する必要がある。

実証試験によると杭頭固定度はばらついており、このばらつきはランダムに現れると思われる。このばらつきを設計上評価するためには、累計的な杭頭固定度の組み合わせを想定し、設計に用いる杭頭固定度の組み合わせを抽出する必要がある。

分析フローを図 - 1.2.5 に示す。

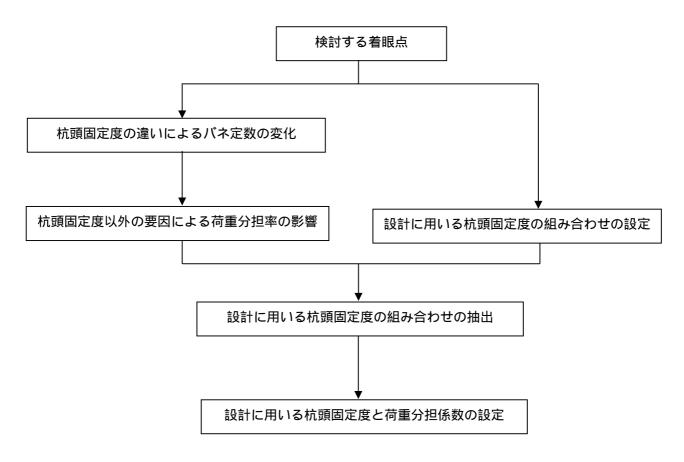


図 - 1.2.5 分析フロー図

1)杭頭固定度の違いによるバネ定数の変化

杭頭固定度の違いによる杭1本に作用する荷重の傾向は、横方向のバネ定数を杭頭固定度 R_{fix} =1.0(固定)~0.0(自由)の範囲でどのように変化するか試算することにより把握する。

(バネ定数の考え方)

水平荷重(杭頭せん断力) h_i と変位 ΔX の関係を横方向のバネ定数 k_i で表し、バネ定数 k_i を用いて杭頭固定度の違いによる水平荷重の傾向を整理する。各杭の荷重(杭頭せん断力) h_i は、変位 ΔX 、杭頭固定度 R_{fix} および地盤反力係数ks を設定し、港研方式を用いて算出する。

$$h_i = k_i \times \Delta X$$
 $k_i = h_i / \Delta X$ $\Xi \Xi I \Xi$

 k_i :バネ定数

 h_i :荷重(杭頭せん断力)

 ΔX : 变位

全杭6本の場合を例に挙げると、図 - 1.2.6 のようなモデルとなり(式 - A)の関係が成立する。それぞれのバネ ($k_1 \sim k_6$)は同じ変位 ΔX を生じ、荷重(杭頭せん断力) $h_1 \sim h_6$ は杭頭固定度により異なる。

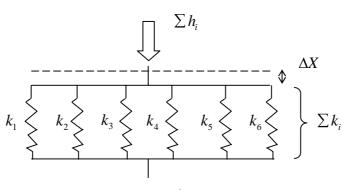


図 - 1.2.6 モデル図

$$\Delta X = \frac{h_1}{k_1} = \frac{h_2}{k_2} = \frac{h_3}{k_3} = \frac{h_4}{k_4} = \frac{h_5}{k_5} = \frac{h_6}{k_6} = \frac{\sum h_i}{\sum k_i}$$
 ($\pm \xi$ - A)

荷重分担の算出式は、(式 - A)より以下の式となる。

$$hi = \frac{ki}{\sum ki} \times \sum hi$$
 (荷重分担率)= $\frac{ki}{\sum ki}$

(試算条件)

試算条件は、実証試験堤で使用した杭と根入れ長を用い、地盤反力係数 k_s は単杭試験結果の推定値とした。

杭 H - $250 \times 250 \times 9 \times 14$ 杭の根入れ長 L = 15.0m 地盤反力係数 k_s = 150kN/m $^{3.5}$ 变位 ΔX = 10cm

(試算結果)

試算結果を図 - 1.2.7、表 - 1.2.1 に示す。

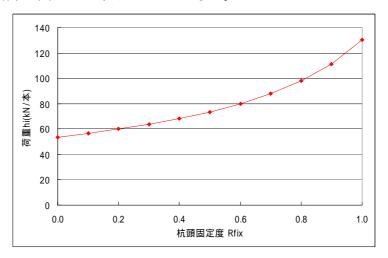


図 - 1.2.7 杭頭固定度の違いによる水平荷重の試算結果

表 - 1.2.1 杭頭固定度の違いによるバネ定数の試算結果 杭頭固定度R fix 1.0 0.9 8.0 0.7 0.6 0.5 0.4 0.2 0.1 0.0 荷重*h*_i(kN/本) 130.5 111.3 97.8 87.71 79.76 73.37 68.16 63.71 60.01 56.64 53.75 バネ定数*k*, 13.05 11.13 9.78 8.77 7.98 7.34 6.82 6.37 6.00 5.66 5.38

以上、試算を行った結果、図 - 1.1.7、表 - 1.1.2 から以下のことがわかった。

杭 1 本に作用する水平荷重は、杭頭固定度が固定 ($R_{\it fix}$ =1.0) に近づくほど大きくなる。

パネ定数も杭頭固定度が固定(R_{fix} =1.0)に近づくほど大きくなる。

2) 杭頭固定度以外の要因による荷重分担率の影響

杭頭固定度以外で荷重分担率に影響があると思われる 変位、 地盤反力係数および 杭の 剛性をパラメータにした場合の荷重分担率がどのように変化するか把握する必要がある。

各杭の杭頭固定度の組み合わせを固定し、 変位、 地盤反力係数および 杭の剛性による 荷重分担率の影響について整理する。

(検討モデル)

全杭 6 本 各杭の杭頭固定度の組み合わせ $R_{fix} = 0.7$ の杭 1 本、 $R_{fix} = 0.0$ (杭頭自由)の杭 5 本

(検討ケース)

検討ケースは、以下の3項目をパラメータとして、合計9ケースで行う。

変位 ΔX (5cm、10cm、20cm) 地盤反力係数 k_s (50kN/m³.5、100kN/m³.5、150kN/m³.5) 杭の剛性 (H250、H400、H458)

a) 変位 ΔX の違いによる荷重分担率への影響

変位を ΔX =5cm、10cm および 20cm とした場合の荷重分担率の検討結果を表 - 1.2.2 に示す。検討条件は、実証試験堤と同じ杭と根入れ長とし、地盤反力係数は、単杭試験結果の推定値とする。

(条件) 杭 H - $250\times250\times9\times14$ 、地盤反力係数 k_s = 150 kN/m $^{3.5}$ 杭の根入れ長 L = 15.0 m

表 - 1.2.2 変位 ΔX の違いによる荷重分担率の検討結果

	荷重 <i>h _i</i> (kN)		バネ定数 <i>k</i> ;		k_i	R _{fix} =0.7の杭の荷重分担率	R _{fix} =0.0の杭の荷重分担率
H-250	<i>R</i> _{fix} =0.7	<i>R</i> _{fix} =0.0	R_{fix} =0.7	R _{fix} =0.0	(+ ×5)	(/)	(/)
<i>X</i> =5cm	53.92	33.02	10.78	6.60	43.80	0.246	0.151
X=10cm	87.71	53.75	8.77	5.38	35.65	0.246	0.151
X=20cm	142.53	87.43	7.13	4.37	28.98	0.246	0.151

変位 ΔX が変化しても、荷重分担率は一定

b) 地盤反力係数 kg の違いによる荷重分担率の影響

地盤反力係数を k_s =50kN/m $^{3.5}$ 、100kN/m $^{3.5}$ および 150kN/m $^{3.5}$ とした場合の荷重分担率の検討結果を表 - 1.2.3 に示す。

(条件)杭 H - $250 \times 250 \times 9 \times 14$ 、 $\Delta X = 10$ cm 杭の根入れ長 L = 15.0m

表 - 1.2.3 地盤反力係数 k。の違いによる荷重分担率の検討結果

	荷重 <i>h ;</i> (kN) バネ定数 <i>k ;</i>		官数 <i>k;</i>	k_i	R _{fix} =0.7の杭の荷重分担率	R _{fix} =0.0の杭の荷重分担率	
H-250	R _{fix} =0.7	<i>R</i> _{fix} =0.0	R_{fix} =0.7	R _{fix} =0.0	(+ ×5)	(/)	(/)
$k_s = 50 \text{kN/m}^{3.5}$	45.68	27.99	4.57	2.80	18.56	0.246	0.151
$k_s = 100 \text{kN/m}^{3.5}$	69.44	42.52	6.94	4.25	28.20	0.246	0.151
$k_s = 150 \text{kN/m}^{3.5}$	87.71	53.75	8.77	5.38	35.65	0.246	0.151

地盤反力係数 k_s が変化しても、杭の荷重分担率は一定

c) 杭の剛性の違いによる荷重分担率の影響

杭の剛性を H250、H400 および H458 とした場合の荷重分担率の検討結果を表 - 1.2.4 に示す。

(条件)地盤反力係数 k_s =100kN/m^{3.5}、变位 ΔX =10cm

杭 H-250×250×9×14、杭の根入れ長L=15.0m

杭 H-400×400×13×21、杭の根入れ長L=20.0m

杭 H-458×417×30×50、杭の根入れ長L=25.0m

表 - 1.2.4 杭の剛性の違いによる荷重分担率の検討結果

	荷重 <i>h _i</i> (kN)		バネ定数 <i>k_i</i>		k _i	R _{fix} =0.7の杭の荷重分担率	R _{fix} =0.0の杭の荷重分担率	
	R _{fix} =0.7	<i>R</i> _{fix} =0.0	R_{fix} =0.7	R _{fix} =0.0	(+ ×5)	(/)	(/)	
H-250	69.44	42.52	6.94	4.25	28.19	0.246	0.151	
H-400	178.31	109.38	17.83	10.94	72.53	0.246	0.151	
H-458	276.53	169.49	27.65	16.95	112.40	0.246	0.151	

杭の剛性が変化しても、杭の荷重分担率は一定

d) 結論

各杭の杭頭固定度を固定した場合、変位 ΔX 、地盤反力係数 k_s および杭の剛性が変わっても、荷重分担率は一定となる。

3) 各杭の杭頭固定度の組み合わせの設定

杭の荷重分担係数は、地盤反力係数 k_s 、杭の剛性、変位が変化しても影響はなく、杭頭固 定度に依存している。そのため、以下の検討は、杭頭固定度を変化させて杭頭固定度と各杭 の荷重分担の関係を分析した。

実証試験結果より各杭の杭頭固定度はばらついており、このバラツキはランダムに発生す るものと思われる。このバラツキを設計上評価するためには、累計的な杭頭固定度の組み合 わせを想定し、設計に用いる杭頭固定度の組み合わせを抽出する必要がある。

・各杭の杭頭固定度の組み合わせケース

今回の実証試験では、杭頭固定度が $R_{fix}=0.6\sim0.0$ (杭頭自由)の範囲であった。各杭の 杭頭固定度の組み合わせを設定するに当たり、杭頭固定度の違いを把握するために、 R_{fr} =0.6 を杭頭固定度の上限値とし、杭頭固定度の組み合わせが極端な場合から平均的 にばらつく場合のケースを設定する。また、実証試験結果の杭頭固定度の組み合わせも検 討ケースとした。検討モデルは、全杭6本と設定し検討ケースを表 - 1.2.5に示す。平成 2年度の実証試験結果では、杭頭固定度が平均的に R_{fix} =0.7 程度であったため、参考に R_{fix} =0.7 と 0.8 を杭頭固定度の上限値とした場合も検討する。

表 - 1.2.5(a) 検討ケース (R_{fr} = 0.6)

	• • • •	. • (• /	1/\H.	,	, (fix •••	,
R _{fix}	杭1	杭2	杭3	杭4	杭5	杭6	
ケース1	0.6	0.6	0.6	0.6	0.6	0.6	
ケース2	0.6	0.6	0.6	0.6	0.6	0.0	
ケース3	0.6	0.6	0.6	0.6	0.0	0.0	
ケース4	0.6	0.6	0.6	0.0	0.0	0.0	
ケース5	0.6	0.6	0.0	0.0	0.0	0.0	
ケース6	0.6	0.0	0.0	0.0	0.0	0.0	
ケース7	0.0	0.0	0.0	0.0	0.0	0.0	
ケース8	0.6	0.5	0.4	0.2	0.1	0.0	
ケース9	0.6	0.4	0.3	0.3	0.2	0.0	(試験結果)

例)ケース6の場合

杭 1 R_{fix} =0.6、杭 2~杭 6 R_{fix} =0.0 (杭頭自由)

表 - 1.2.5(b) 検討ケース(R_{ss}=0.7)

	•	(- /	17 18	, , ,	• (fix -
R _{fix}	杭1	杭2	杭3	杭4	杭5	杭6
ケース1	0.7	0.7	0.7	0.7	0.7	0.7
ケース2	0.7	0.7	0.7	0.7	0.7	0.0
ケース3	0.7	0.7	0.7	0.7	0.0	0.0
ケース4	0.7	0.7	0.7	0.0	0.0	0.0
ケース5	0.7	0.7	0.0	0.0	0.0	0.0
ケース6	0.7	0.0	0.0	0.0	0.0	0.0
ケース7	0.0	0.0	0.0	0.0	0.0	0.0
ケース8	0.7	0.6	0.4	0.3	0.1	0.0
ケース9	0.6	0.4	0.3	0.3	0.2	0.0

表 - 1.2.5(c) 検討ケース(R_{fix} = 0.8)

	-	/				IIX.
R _{fix}	杭1	杭2	杭3	杭4	杭5	杭6
ケース1	0.8	0.8	0.8	0.8	0.8	0.8
ケース2	0.8	0.8	0.8	0.8	0.8	0.0
ケース3	0.8	0.8	0.8	0.8	0.0	0.0
ケース4	0.8	0.8	0.8	0.0	0.0	0.0
ケース5	0.8	0.8	0.0	0.0	0.0	0.0
ケース6	0.8	0.0	0.0	0.0	0.0	0.0
ケース7	0.0	0.0	0.0	0.0	0.0	0.0
ケース8	0.8	0.6	0.5	0.3	0.2	0.0
ケース9	0.6	0.4	0.3	0.3	0.2	0.0

(試験結果)

4) 設計に用いる杭頭固定度の組み合わせの抽出

杭頭固定度の組み合わせをパラメータとし、杭の設計に用いる組み合わせを抽出する。また、 杭の挙動は杭の断面の決定以外に支持力の検討に影響があるため、杭頭曲げモーメントの合計 値が最大となる組み合わせも抽出する。(支持力の検討では、杭頭曲げモーメントが大きくな るほど支持力の安定が厳しくなり、堤体幅が大きくなる)

(検討モデル)

全杭6本(実証試験堤)

堤体延長 L = 4.8m (実証試験堤)

杭 H - 400×400×13×21

杭の根入れ長 L = 20.0m

地盤反力係数 k_s =100kN/m^{3.5}

設計荷重 165.6kN/m×4.8m 800kN (南防波堤 12 工区の設計荷重)

a) R_{fix} =0.6 の検討結果

検討結果は、以下のとおりである。

杭 1 本に作用する曲げモーメントが最大となる組み合わせはケース 7 (全杭 R_{fix} =0.0)である。

- 杭頭曲げモーメントの合計値が最大となる組み合わせは、ケース1(全杭 $R_{\scriptscriptstyle fix}$ =0.6) である。

ケース8(平均的にばらつくケース)とケース9(試験結果)の結果がほぼ同じ結果となる。

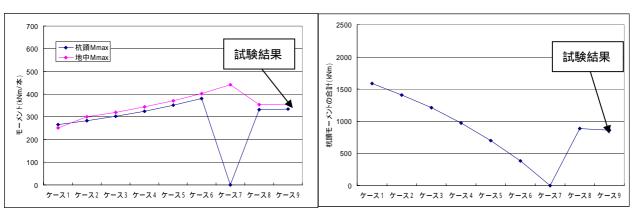


図 - 1.2.8 各ケースのモーメント

図 - 1.2.9 各ケースの杭頭モーメントの合計値

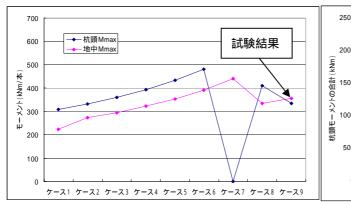
(考察:設計に用いる杭頭固定度の組み合わせの設定)

. 1本の杭の応力を計算する場合、底版の部材検討をする場合

図 - 1.2.8 より、ケース 6 とケース 7 は、杭に作用する曲げモーメントが試験結果より大きい値となるが、全杭の杭頭固定度が R_{fix} =0 または、 1 本だけが R_{fix} =0.6 で残りの杭が R_{fix} =0 というケースは現実にはないと考えられるため考慮しない。

その他のケースについては曲げモーメントはほぼ同程度であるため、設計に用いる 杭頭固定度は、実証試験結果とほぼ同じ結果となったケース8の R_{fix} =0.6~0の範囲 で均等にばらつくケース(熊本港)と設定する。

. 基礎の支持力を検討する場合


図 - 1.2.9 より、設計に用いる杭頭固定度は、最も合計モーメントの大きい全杭 R_{fix} =0.6 の杭のケース(熊本港)と設定する。実験結果では杭頭固定度がはらついていたが、施工精度の向上等の要因から杭頭固定のばらつかないときを想定した。

b) R_{fix} =0.7 の検討結果(参考)

検討結果は、以下のとおりである。

杭 1 本に作用する曲げモーメントが最大となる組み合わせはケース 6 (杭 1 本 R_{fix} =0.8、その他は R_{fix} =0.0) である。

杭頭曲げモーメントの合計値が最大となる組み合わせは、ケース 1 (全杭 R_{fix} =0.7) である。

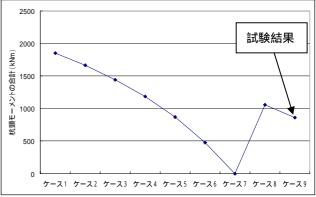
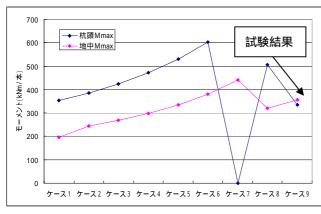


図 - 1.2.10 各ケースのモーメント


図 - 1.2.11 各ケースの杭頭モーメントの合計値

c) R_{fix} = 0.8 の検討結果 (参考)

検討結果は、以下のとおりである。

杭 1 本に作用する曲げモーメントが最大となる組み合わせはケース 6 (杭 1 本 R_{fix} =0.8、その他は R_{fix} =0.0) である。

杭頭曲げモーメントの合計値が最大となる組み合わせは、ケース 1(全杭 $R_{\it fix}$ =0.8)である。

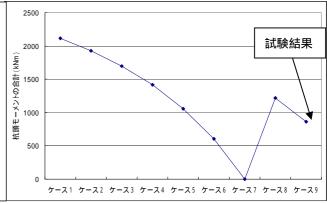


図 - 1.2.12 各ケースのモーメント

図 - 1.2.13 各ケースの杭頭モーメントの合計値

なお、検討結果一覧表は表 - 1.2.6 に示す。

表 - 1.2.6(a) 検討結果一覧表 (R_{fix} =0.6)

								t _{fix} =0.0)	
	华丽国宝度 2	杭1	杭2	杭3	杭4	杭5	杭6		
	杭頭固定度R _{fix}	0.6	0.6	0.6	0.6	0.6	0.6		
	バネ定数 <i>k</i> ,	16.22	16.22	16.22	16.22	16.22	16.22	k_i	97.32
ケース1	荷重分担率	0.167	0.167	0.167	0.167	0.167	0.167		
	荷重h;(kN/本)	133.33	133.33	133.33	133.33			/ /	800
	杭頭 M (kNm/本)	264.72	264.72	264.72	264.72	264.72	264.72		1588.32
	地中M(kNm/本)	251.36	251.36	251.36				M _{max} (kNm/本)	264.72
	杭頭固定度R _{fix}	0.6	0.6	0.6	0.6	0.6	0.0		
	バネ定数 <i>k</i> ,	16.22	16.22	16.22	16.22	16.22	10.94	k_i	92.04
ケースク	荷重分担率	0.176	0.176	0.176	0.176	0.176	0.119		
/ //-	荷重 <i>h _i</i> (kN/本)	140.98	140.98	140.98	140.98	140.98	95.09	<i>h</i> _{<i>i</i>} (kN)	800
	杭頭 M (kNm/本)	282.10	282.10	282.10	282.10	282.10	0	杭頭 M (kNm)	1410.50
	地中 <i>M</i> (kNm/本)	268.26	268.26	268.26	268.26	268.26	299.62	M _{max} (kNm/本)	299.62
	杭頭固定度R _{fix}	0.6	0.6	0.6	0.6	0.0	0.0		
	バネ定数 <i>k</i> ;	16.22	16.22	16.22	16.22	10.94	10.94	k_i	86.76
ケーフコ	荷重分担率	0.187	0.187	0.187	0.187	0.126	0.126	,	22
	荷重 <i>h_i</i> (kN/本)	149.56	149.56	149.56		100.88		$h_i(kN)$	800
	杭頭 <i>M</i> (kNm/本)	301.88	301.88	301.88		0		杭頭 <i>M</i> (kNm)	1207.52
	地中 M (kNm/本)	287.15	287.15	287.15	287.15			M _{max} (kNm/本)	320.18
	杭頭固定度R _{fix}	0.6	0.6	0.6	0.0	0.0	0.0		
	バネ定数 <i>k</i> ;	16.22	16.22	16.22	10.94			k_i	81.48
	荷重分担率	0.199	0.199	0.199		0.134		Λ _j	J1. 1 0
ケース4	荷重力 <u>汽</u> 等 荷重 <i>h_i</i> (kN/本)	159.25	159.25	159.25	107.41	107.41	107.41	h;(kN)	800
	杭頭 <i>M</i> (kNm/本)	324.14	324.14	324.14	0	0	0	杭頭 <i>M</i> (kNm)	972.42
	地中 <i>M</i> (kNm/本)	308.10	308.10	308.10					343.75
	杭頭固定度 <i>R_{fix}</i>	0.6	0.6	0.0	0.0	0.0	0.0	max (, 1)	0.00
	バス定数 <i>k</i> ,							<i>l</i> ₂	76.0
	バネル数 K / 荷重分担率	16.22	16.22	10.94 0.144	10.94 0.144	10.94 0.144	10.94 0.144	<i>k</i> _i	76.2
ケース5	何里ガ担 <u>卒</u> 荷重 <i>h ;</i> (kN/本)	0.213 170.29	0.213 170.29	114.86	114.86		_	h _i (kN)	800
	杭頭 <i>M</i> (kNm/本)	350.19	350.19	0	0	0	0	杭頭 <i>M</i> (kNm)	700.38
	地中 <i>M</i> (kNm/本)	332.75	332.75	370.64				加頭が(kNm/本)	370.64
	杭頭固定度 <i>R_{fix}</i>	0.6	0.0	0.0	0.0	0.0	0.0	W max (KI VIIII 74)	070.04
								1.	70.00
	バネ定数 <i>k_i</i>	16.22	10.94	10.94	10.94	10.94	10.94	<i>k</i> _i	70.92
ケース6	荷重分担率	0.229	0.154	0.154	0.154	0.154	0.154		000
	荷重 <i>h_i</i> (kN/本)	182.97	123.41 0	123.41 0	123.41 0	123.41 0	123.41	<i>h_i</i> (kN) 杭頭 <i>M</i> (kNm)	800 380.13
	杭頭 M (kNm/本)	380.13 360.53	402.66	402.66	·		402.66	// / / / / / / / / / / / / / / / / / /	402.66
	地中 <i>M</i> (kNm/本)							w _{max} (NIIII/ 本)	402.00
	杭頭固定度R _{fix}	0.0	0.0	0.0	0.0	0.0	0.0		
	バネ定数 <i>k</i> ;	10.94					10.94	k _i	65.64
ケース7	荷重分担率	0.167	0.167	0.167	0.167	0.167	0.167	/ // * !!	
	荷重 <i>h_i</i> (kN/本)	133.33	133.33	133.33	133.33	133.33	133.33	<i>h_i</i> (kN)	800
	杭頭 <i>M</i> (kNm/本)	140.70	140.70	140.70	140.70	140.70	140.70	杭頭 M (kNm)	0.00
	地中 M (kNm/本)	440.79	440.79	440.79				M _{max} (kNm/本)	440.79
	杭頭固定度R _{fix}	0.6	0.5	0.4	0.2	0.1	0.0		
	バネ定数 <i>k</i> ;	16.22	14.91	13.85	12.2	11.53	10.94	k_i	79.65
ケース8	荷重分担率	0.204	0.187	0.174	0.153	0.145	0.137		
```	荷重 <i>h _i</i> (kN/本)	162.91	149.76	139.11	122.54	115.81	109.88		800
	杭頭 M (kNm/本)	332.74	251.96	185.22	80.09	37.53	0	杭頭 M (kNm)	887.54
	地中M(kNm/本)	316.24	320.30	327.06	339.73	346.31	352.67	M _{max} (kNm/本)	352.67
	杭頭固定度 <i>R_{fix}</i>	0.6	0.4	0.3	0.3	0.2	0.0		
	バネ定数 <i>k</i> ;	16.22	13.85	12.96	12.96	12.20	10.94	$k_i$	79.13
ケース9	荷重分担率	0.205	0.175	0.164	0.164	0.154	0.138		
	荷重 <i>h ;</i> (kN/本)	163.98	140.02	131.02	131.02	123.34	110.60	$h_i(kN)$	800.00
	杭頭 <i>M</i> (kNm/本)	335.27	186.60	129.74	129.74	80.70	0	杭頭 <i>M</i> (kNm)	862.05
	地中M(kNm/本)	318.64		335.11	335.11		355.27	M _{max} (kNm/本)	355.27
•								の最大の大きいた	

M_{max}は、杭頭モーメントの最大と地中モーメントの最大の大きい方である。

表 - 1.2.6(b) 検討結果一覧表 (  $R_{\it fix}$  =0.7 )

								f _{ix} =0.7	
	长商用字度 <i>D</i>	杭1	<u>杭2</u>	杭3	杭4	杭5	<u>杭6</u>		
	杭頭固定度Rfix	0.7	0.7	0.7	0.7	0.7	0.7		
	バネ定数 <i>k</i> ,	17.83	17.83	17.83	17.83	17.83	17.83	$k_i$	106.98
ケース1	荷重分担率	0.167	0.167	0.167	0.167	0.167	0.167		
	荷重 <i>h ;</i> (kN/本)	133.33	133.33	133.33	133.33	133.33	133.33		800
	杭頭 M (kNm/本)	308.83	308.83	308.83	308.83	308.83	308.83		1852.98
	地中 M (kNm/本)		223.36	223.36	223.36			M _{max} (kNm/本)	308.83
	杭頭固定度R _{fix}	0.7	0.7	0.7	0.7	0.7	0.0		
	バネ定数 <i>k</i> ,	17.83	17.83	17.83	17.83	17.83	10.94	$k_i$	100.09
ケース2	荷重分担率	0.178	0.178	0.178	0.178	0.178	0.109	Ì	
	荷重 <i>h _i</i> (kN/本)	142.51	142.51	142.51	142.51	142.51	87.44	$h_i(kN)$	800
	杭頭 M(kNm/本)	333.23	333.23	333.23	333.23	333.23	0	杭頭 M (kNm)	1666.15
	地中 M(kNm/本)	241.00	241.00	241.00	241.00	241.00	272.49	M _{max} (kNm/本)	333.23
	杭頭固定度R _{fix}	0.7	0.7	0.7	0.7	0.0	0.0		
	バネ定数 <i>k</i> ;	17.83	17.83	17.83	17.83	10.94	10.94	k _i	93.2
	荷重分担率	0.191	0.191	0.191	0.191	0.117	0.117	,	
ケース3	荷重 <i>h_i</i> (kN/本)	153.05	153.05		153.05		93.91	$h_i(kN)$	800
	杭頭 <i>M</i> (kNm/本)	361.55		361.55	361.55	0	0		1446.20
	地中 M(kNm/本)	261.07	261.07	261.07	261.07	295.44			361.55
	杭頭固定度 <i>R_{fix}</i>	0.7	0.7	0.7	0.0	0.0	0.0	max ( · · · )	
	バネ定数 <i>k</i> ;	17.83			10.94	10.94	10.94	k	06 24
	バホル奴 K / 荷重分担率	0.207	17.83 0.207	17.83 0.207	0.127	0.127	0.127	$k_i$	86.31
ケース4	何里ガ担率 荷重 <i>h_i</i> (kN/本)	165.26	165.26		101.40	101.40	101.40	<i>h</i> _{<i>i</i>} (kN)	800
	机頭 <i>M</i> (kNm/本)	394.68	394.68	394.68	0	0	01.40		1184.04
	<u>机筑/// (kNm/本)</u> 地中 <i>M</i> (kNm/本)	284.60		284.60	322.05				394.68
	杭頭固定度 <i>R_{fix}</i>	0.7	0.7	0.0	0.0	0.0	0.0	max (KI (IIII ) + )	004.00
								,	70.40
	バネ定数 <i>k</i> ;	17.83	17.83	10.94	10.94	10.94	10.94	$k_i$	79.42
ケース5	荷重分担率	0.225	0.225	0.138	0.138	0.138	0.138	/ // A.D.	000
	荷重 <i>h_i</i> (kN/本)	179.60			110.20			, , ,	800
	杭頭 M (kNm/本)	434.24		0	0	0	0	杭頭 M (kNm)	868.48
	地中M(kNm/本)	313.26	313.26	353.82	353.82	353.82	353.82	M _{max} (kNm/本)	434.24
	杭頭固定度R _{fix}	0.7	0.0	0.0	0.0	0.0	0.0		
	バネ定数 <i>k_i</i>	17.83	10.94	10.94	10.94	10.94	10.94	$k_i$	72.53
ケース6	荷重分担率	0.246	0.151	0.151	0.151	0.151	0.151		
	荷重 <i>h ;</i> (kN/本)	196.66	120.67	120.67	120.67	120.67	120.67	$h_i(kN)$	800
	杭頭 M (kNm/本)	481.65	0	0	0	0	0	杭頭M(kNm)	481.65
	地中M(kNm/本)	348.02	392.17	392.17	392.17	392.17		M _{max} (kNm/本)	481.65
	杭頭固定度R _{fix}	0.0	0.0	0.0	0.0	0.0	0.0		
	バネ定数 <i>k</i> ,	10.94	10.94	10.94	10.94	10.94	10.94	$k_i$	65.64
ケース7	荷重分担率	0.167	0.167			0.167	0.167	·	
	荷重 <i>h _i</i> (kN/本)	133.33	133.33	133.33	133.33	133.33	133.33	$h_i(kN)$	800
	杭頭 M (kNm/本)	0	0	0	0	0	0	杭頭 M (kNm)	0.00
	地中 M(kNm/本)	440.79	440.79	440.79	440.79	440.79	440.79	M _{max} (kNm/本)	440.79
	杭頭固定度R _{fix}	0.7	0.6	0.5	0.3	0.2	0.0		
	バネ定数 <i>k</i> ;	17.83	16.22	14.91	12.96	12.20	10.94	k _i	85.06
<u> </u>	荷重分担率	0.210	0.191	0.175	0.152	0.143	0.129	~,	30.00
ケース8	荷重 <i>h ;</i> (kN/本)	167.69		140.23			102.89	$h_i(kN)$	800
	杭頭 M(kNm/本)		316.04		122.28	35.65	0	杭頭 <i>M</i> (kNm)	1060.88
	地中 M (kNm/本)	296.58			315.36	328.84	335.16		410.98
	杭頭固定度 <i>R_{fix}</i>	0.6	0.4	0.3	0.3	0.2	0.0	max · · /	
		16.22						L	70.40
	I ハ マ 元 <i>死 レ</i>		13.85	12.96	12.96	12.20	10.94	$k_i$	79.13
	バネ定数 <i>k</i> /			0.464	0 464	0.4E4	0 4 20		
ケース9	荷重分担率	0.205	0.175	0.164	0.164	0.154	0.138	h (LNI)	800 00
ケース9	荷重分担率 荷重 <i>h i</i> (kN/本)	0.205 163.98	0.175 140.02	131.02	131.02	123.34	110.60	カ _i (kN) 粒頭 M(kNm)	800.00
ケース9	荷重分担率	0.205 163.98 335.27	0.175	131.02 129.74	131.02 129.74	123.34 80.70	110.60 0	11 ==	800.00 862.05 355.27

 $M_{max}$ は、杭頭モーメントの最大と地中モーメントの最大の大きい方である。

表 - 1.2.6(c) 検討結果一覧表 (  $R_{\it fix}$  =0.8 )

# 抗頭固定度 R ₇₁₂ 0.8 0.8 0.8 0.8 0.8 0.8 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.88 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89 19.89		-	14 . 1	14 - 1		12.			jix	
アース   「八本定数人」 19.88		<b>华丽园宫南</b> 2	杭1	杭2	杭3	杭4	杭5	杭6		
テース   荷重分担率   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.167   0.16										
→ 「									$k_i$	119.28
横頭	ケース1									
サー 州 (NNm / 本) 195.93 195.93 195.93 195.93 195.93 195.93 M mag (kNm / 本) 352.95										
ボス で										
パース2									M _{max} (kNm/本)	352.95
ケース2   荷重分担率			0.8	0.8	8.0	0.8	0.8	0.0		
荷重か			19.88	19.88	19.88	19.88	19.88	10.94	$k_i$	110.34
横重が(N/A) 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 14.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.14 144.1	ケース2							0.099		
### M (kNm/本) 214.63 214.63 214.63 214.63 214.63 214.63 243.65 M max (kNm/本) 385.84 抗頭固定度 R r r r r r r r r r r r r r r r r r r								79.32		
ケース3   荷頭固定度尺									杭頭 M (kNm)	
									M _{max} (kNm/本)	385.84
テース3   荷重分担率		杭頭固定度 <i>R_{fix}</i>	0.8	8.0	8.0	0.8	0.0	0.0		
荷重か(kN/本)   156.84   156.84   156.84   86.31   86.31   7, k(N)   800		バネ定数 <i>k</i> ;	19.88		19.88		10.94	10.94	$k_i$	101.4
荷重か   (KN / 本)	ケース3			0.196	0.196	0.196	0.108	0.108		
### PM (KNm/本) 236.33 236.33 236.33 268.46 268.46 Mmax (KNm/本) 424.8							86.31	86.31		
ケース4										1699.20
ケース4         バネ定数k, 両重分担率									M _{max} (kNm/本)	424.8
ケース4         荷重分担率 商重 // (kN)/本)         0.215 172.01         0.215 172.01         0.215 172.01         0.215 172.01         0.118 94.66         94.66 94.66         94.66 94.66         // (kN)/ 94.66         0.00 10         が頂M (kNm)/本) 1417.02         80.00 202.72         0.00 262.72         0.00 2		杭頭固定度 <i>R_{fix}</i>	0.8	0.8	0.8	0.0	0.0	0.0		
荷重					19.88	10.94	10.94	10.94	$\overline{k_i}$	92.46
荷重か(kN/本)	ケース4									
地中州(kNm/本) 262.72 262.72 298.10 298.10 298.10 Mmax(kNm/本) 472.34 抗頭固定度尺 の 8 0.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	[ ^ ` `									
<ul> <li>大元之数 k_i 19.88 19.88 10.94 10.94 10.94 10.94 k_i 83.52 荷重分担率 0.238 0.238 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.131 0.13</li></ul>										1417.02
ケース5   「バネ定数k」							298.10	298.10	M _{max} (kNm/本)	472.34
### 7-25    荷重分担率			0.8	0.8	0.0					
行画		バネ定数 <i>k</i> ,	19.88	19.88	10.94	10.94	10.94	10.94	$\overline{k_i}$	83.52
荷重か,(kN/本)	ケース5	荷重分担率	0.238	0.238	0.131	0.131	0.131	0.131		
地中 M (kNm/本)   294.76   294.76   334.29   334.29   334.29   334.29   M _{max} (kNm/本)   530.24	[ ^ ^ 3				104.79	104.79	104.79	104.79		800
ケース6						Ū		ŭ		1060.48
ケース6									M _{max} (kNm/本)	530.24
## 5-25   荷重分担率						0.0	0.0	0.0		
荷重か/(kN/本) 213.25 117.35 117.35 117.35 117.35 117.35					10.94			10.94	$\overline{k_i}$	74.58
荷重	ケース6									
地中 M (kNm/本)   335.06   379.77   379.77   379.77   379.77   379.77   M _{max} (kNm/本)   603.51				117.35	117.35	117.35	117.35	117.35		800
##  ##  ##  ##  ##  ##  ##  ##  ##  #										603.51
ケース7									M _{max} (kNm/本)	603.51
ケース7 荷重分担率 0.167 0.167 0.167 0.167 0.167 0.167 0.167 可力が 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.33 133.3			0.0	0.0			0.0			
荷重角 _i (kN/本)   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   133.33   13			10.94	10.94	10.94	10.94	10.94	10.94	$k_i$	65.64
荷重角 _f (kN/本)	ケース7									
地中 M (kNm/本) 440.79 440.79 440.79 440.79 440.79 440.79 440.79 440.79 440.79 440.79 440.79 が頭固定度 R が 0.8 0.6 0.5 0.3 0.2 0.0 バネ定数 k 19.88 16.22 14.91 12.96 12.20 10.94 k 8 87.11 荷重分担率 0.228 0.186 0.171 0.149 0.140 0.126 荷重 h (kNm/本) 182.57 148.96 136.93 119.02 112.04 100.47 h (kNm) 800 抗頭 M (kNm/本) 505.58 300.50 227.40 116.19 72.29 0 抗頭 M (kNm) 1221.96 地中 M (kNm/本) 280.93 285.83 289.35 299.83 306.83 318.70 M (kNm/本) 505.58 抗頭固定度 R が 0.6 0.4 0.3 0.3 0.2 0.0 バネ定数 k 16.22 13.85 12.96 12.96 12.20 10.94 k 7 79.13 荷重 分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重 h (kNm/本) 163.98 140.02 131.02 131.02 123.34 110.60 h (kNm) 800.00 抗頭 M (kNm/本) 335.27 186.60 129.74 129.74 80.70 0 抗頭 M (kNm/本) 862.05 地中 M (kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 M (kNm/本) 355.27										800
# 抗頭固定度R fix 19.88 16.22 14.91 12.96 12.20 10.94 k; 87.11						_		_		0.00
ケース8									M _{max} (kNm/本)	440.79
ケース 8 荷重分担率 0.228 0.186 0.171 0.149 0.140 0.126 荷重 h _i (kN/本) 182.57 148.96 136.93 119.02 112.04 100.47 h _i (kN) 800 杭頭 M(kNm/本) 505.58 300.50 227.40 116.19 72.29 0 杭頭 M(kNm) 1221.96 地中 M(kNm/本) 280.93 285.83 289.35 299.83 306.83 318.70 M _{max} (kNm/本) 505.58 杭頭固定度 R _{fix} 0.6 0.4 0.3 0.3 0.2 0.0 バネ定数 k _i 16.22 13.85 12.96 12.96 12.20 10.94 k _i 79.13 荷重 分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重 h _i (kN/本) 163.98 140.02 131.02 131.02 123.34 110.60 h _i (kN) 800.00 杭頭 M(kNm/本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 M(kNm/本) 355.27 地中 M(kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 M _{max} (kNm/本) 355.27			0.8	0.6	0.5	0.3		0.0		
荷重 h / (kN / 本) 182.57 148.96 136.93 119.02 112.04 100.47 h / (kN) 800 抗頭 M (kNm / 本) 505.58 300.50 227.40 116.19 72.29 0 抗頭 M (kNm / 本) 1221.96 地中 M (kNm / 本) 280.93 285.83 289.35 299.83 306.83 318.70 M / (kNm / 本) 505.58 抗頭固定度 R / 「			19.88	16.22	14.91	12.96	12.20	10.94	$k_i$	87.11
荷重か _i (kN/本) 182.57 148.96 136.93 119.02 112.04 100.47 か _i (kN) 800 抗頭 M(kNm/本) 505.58 300.50 227.40 116.19 72.29 0 杭頭 M(kNm) 1221.96 地中 M(kNm/本) 280.93 285.83 289.35 299.83 306.83 318.70 M _{max} (kNm/本) 505.58 杭頭固定度 R _{fix} 0.6 0.4 0.3 0.3 0.2 0.0 バネ定数 k _i 79.13 荷重分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重か _i (kN/本) 163.98 140.02 131.02 131.02 123.34 110.60 か _i (kN) 800.00 杭頭 M(kNm/本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 M(kNm) 862.05 地中 M(kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 M _{max} (kNm/本) 355.27	ケース8									
地中 M (kNm/本) 280.93 285.83 289.35 299.83 306.83 318.70 M _{max} (kNm/本) 505.58 抗頭固定度 R _{fix} 0.6 0.4 0.3 0.3 0.2 0.0 バネ定数 K _i 16.22 13.85 12.96 12.96 12.20 10.94 K _i 79.13 荷重分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重 h _i (kN/本) 163.98 140.02 131.02 131.02 123.34 110.60 h _i (kN) 800.00 杭頭 M (kNm/本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 M (kNm/本) 862.05 地中 M (kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 M _{max} (kNm/本) 355.27								100.47		800
杭頭固定度R   16.22   13.85   12.96   12.96   12.20   10.94   k   79.13   79.13   万重分担率   0.205   0.175   0.164   0.164   0.154   0.138										1221.96
バネ定数 k / 16.22 13.85 12.96 12.96 12.20 10.94 k / 79.13 荷重分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重 h / (kN / 本) 163.98 140.02 131.02 131.02 123.34 110.60 h / (kN) 800.00 杭頭 M (kNm / 本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 M (kNm / 本) 318.64 329.53 335.11 335.11 342.29 355.27 M max (kNm / 本) 355.27		· ·							M _{max} (kNm/本)	505.58
ケース 9 荷重分担率 0.205 0.175 0.164 0.164 0.154 0.138 荷重 $h_i(kN/4x)$ 163.98 140.02 131.02 131.02 123.34 110.60 $h_i(kN)$ 800.00 杭頭 $M(kNm/4x)$ 335.27 186.60 129.74 129.74 80.70 0 杭頭 $M(kNm)$ 862.05 地中 $M(kNm/4x)$ 318.64 329.53 335.11 335.11 342.29 355.27 $M_{max}(kNm/4x)$ 355.27		杭頭固定度R _{fix}	0.6	0.4	0.3	0.3	0.2	0.0		
荷重 $h_i$ (kN/本) 163.98 140.02 131.02 131.02 123.34 110.60 $h_i$ (kN) 800.00 杭頭 $M$ (kNm/本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 $M$ (kNm) 862.05 地中 $M$ (kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 $M_{max}$ (kNm/本) 355.27			16.22	13.85	12.96	12.96	12.20	10.94	$\overline{k_i}$	79.13
荷重 $h_f$ (kN/本) 163.98 140.02 131.02 131.02 123.34 110.60 $h_f$ (kN) 800.00 杭頭 $M$ (kNm/本) 335.27 186.60 129.74 129.74 80.70 0 杭頭 $M$ (kNm) 862.05 地中 $M$ (kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 $M_{max}$ (kNm/本) 355.27	ケースの	荷重分担率	0.205			0.164	0.154	0.138	-	
地中 M (kNm/本) 318.64 329.53 335.11 335.11 342.29 355.27 M _{max} (kNm/本) 355.27	[ ^ ^ ^	荷重h;(kN/本)		140.02	131.02	131.02	123.34	110.60	$h_i(kN)$	800.00
地中 M (kNm/本)   318.64   329.53   335.11   335.11   342.29   355.27   M _{max} (kNm/本)   355.27 M _{max} は、杭頭モーメントの最大と地中モーメントの最大の大きい方である。										862.05
$M_{\it max}$ は、杭頭モーメントの最大と地中モーメントの最大の大きい方である。		地中 M(kNm/本)				335.11	342.29	355.27	M _{max} (kNm/本)	355.27
			$M_{max}$ lt	、杭頭モ	ーメント	の最大と	:地中モ	ーメントの	の最大の大きい方	゙゙゙である。

#### 5) 設計に用いる杭頭固定度と杭の荷重分担係数

前述のとおり1本の杭の応力計算時および底版の部材検討時に $R_{fix}$ =0.6~0 の範囲で均等にばらつくケース(熊本港)を考慮した場合、各杭の荷重分担を把握する必要がある。そこで、モデルケースを計算することにより、設計に用いる荷重分担係数を設定する。

(各杭の杭頭固定度の組み合わせ)

ケース A 実証試験結果と同じ杭頭固定度(第3 サイクル第 11 ステップ)のケースケース B  $R_{fix}$ =0~0.6 の範囲で均等にばらついたケース

表 - 1.2.7 各杭の杭頭固定度の組み合わせ

ケース		杭頭固定度 $R_{\it fix}$								
ケースA	0.6	0.6 0.4 0.3 0.3 0.2 0								
ケースB	0.6	0.5	0.4	0.2	0.1	0				

#### (検討モデル)

堤体延長 L = 4.8m、杭 H -  $400 \times 400 \times 13 \times 21$ 、根入れ長 L = 20.0m、 6 本 地盤反力係数  $k_c$  = 100kN/m $^{3.5}$ 

設計荷重 165.6kN/m×4.8m 800kN(南防波堤 12 工区の設計荷重)

#### (計算結果)

計算結果は、表 - 1.2.8、図 - 1.2.14に示す。

表 - 1.2.8 計算結果

		杭1	杭2	杭3	杭4	杭5	杭6		
	杭頭固定度R _{fix}	0.6	0.4	0.3	0.3	0.2	0.0		
4	バネ定数 <i>k</i> ;	16.22	13.85	12.96	12.96	12.20	10.94	$k_i$	79.13
11	荷重分担率	0.20	0.18	0.16	0.16	0.15	0.14		
ス	荷重 <i>h_;</i> (kN/本)	163.98	140.02	131.02	131.02	123.34	110.60	$T_{i}$	800.00
Α	h _i /平均荷重	1.23	1.05	0.98	0.98	0.93	0.83		
	杭頭M(kNm/本)	335.27	186.60	129.74	129.74	80.70	0	杭頭M	862.05
	地中 <i>M(</i> kNm/本)	318.6	329.5	335.1	335.1	342.3	355.27		
	杭頭固定度R _{fix}	0.6	0.5	0.4	0.2	0.1	0.0		
4	バネ定数 <i>k</i> ;	16.22	14.91	13.85	12.2	11.53	10.94	$k_i$	79.65
Ιí	荷重分担率	0.20	0.19	0.17	0.15	0.14	0.14		
ス	荷重h _/ (kN/本)	162.91	149.76	139.11	122.54	115.81	109.88	$T_i$	800.00
В	h _/ /平均荷重	1.22	1.12	1.04	0.92	0.87	0.82		
	杭頭 <i>M</i> (kNm/本)	332.7	252	185.2	80.09	37.53	0	杭頭M	887.54
	地中M/kNm/本)	316.2	320.30	327.06	339.7	346.3	352.7		

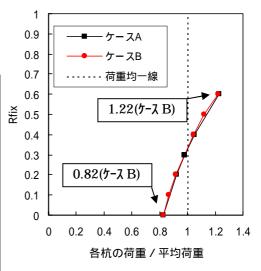



図 - 1.2.14 杭頭固定度と各杭の分担 荷重/平均荷重の関係図

荷重分担率 = (杭1本に作用する荷重)/(各杭に作用する荷重の合計)

(考察:設計に用いる杭の荷重分担係数)

 $R_{fr}$  =0.6~0 の範囲で均等にばらつくとき、表 - 1.2.8、図 - 1.2.14 から

- . 1本の杭の杭頭部の応力計算は、杭頭モーメントが最大となる  $R_{_{fix}}$  =0.6 の杭を考慮し、そのときの**荷重分担係数**  $\alpha_{_T}$  は、1.25 とする。(モデルケース 1.22、試験結果 1.24 から安全側を考慮して決定)
- . 1本の杭の地中部の応力計算は、地中部モーメントが最大となる  $R_{fix}$  =0.0 の杭を考慮し、そのときの**荷重分担係数**  $\beta_T$  は、0.85 とする。(モデルケース 0.82、試験結果 0.84 から安全側を考慮して決定)

 $h_i$ (杭1本に作用する荷重)= $\alpha_T$  または  $eta_T$ (荷重分担係数) $imes h_i$ / $N_i$ (平均荷重)

6) 設計に用いる杭頭固定度と荷重分担係数のまとめ

設計に用いる杭頭固定度と荷重分担係数を以下のとおり設定する。

- a) 杭の断面検討、底版の部材検討
  - ・杭頭固定度は、 $R_{fix}=0\sim0.6$ の範囲で均等にばらつく(熊本港)。
  - ・1 本当たりの杭の断面検討を行うときの最大曲げモーメントの算出には、以下の 2 とおりの杭を考慮する。

#### (杭頭部の検討)

杭頭部の検討を行うときには、 $R_{fix}$ =0.6~0 の範囲で杭頭曲げモーメントが最も大きくなる $R_{fix}$ =0.6 の杭を考慮する。

杭頭固定度が大きい杭ほど分担する荷重は大きいため、杭の計算に用いる荷重には、1函当たりに作用する水平荷重を杭本数で除した値に以下の荷重分担係数を乗じた値を用いるものとする。

$$R_{\mathit{fix}} = 0.6$$
 の杭の荷重分担  $h_{\!\scriptscriptstyle i} = lpha_{\!\scriptscriptstyle T} imes \sum h_{\!\scriptscriptstyle i} \, / \, N$ 

ここに、 $\alpha_T$ :荷重分担係数 (熊本港: 1.25)

 $N_i$ : 杭本数

 $\mathit{h_i}$ : 1本当たりの水平荷重

 $\sum h_i$ : 全水平荷重

#### (地中部の検討)

地中部の検討を行うときには、 $R_{fix}$  =0.6~0 の範囲で地中曲げモーメントが最も大きくなる  $R_{fix}$  =0 の杭を設定する。杭頭固定度が小さい杭ほど分担する荷重は小さいため、杭の計算に用いる荷重には、1函当たりに作用する水平荷重を杭本数で除した値に以下の荷重分担係数を乗じた値を用いるものとする。

$$R_{\mathit{fix}} = 0$$
 の杭の荷重分担  $h_{\mathit{i}} = eta imes \sum h_{\mathit{i}} / N$ 

ここに、 $\beta$ :荷重分担係数(熊本港:0.85)

・底版の部材検討を行うときの杭頭モーメントは、 $R_{fix}$  =0.6 の杭を考慮して算定し、そのとき荷重分担係数は 1.25 とする。

#### b) 基礎の支持力の検討

- ・杭頭固定度は、 $R_{fix}$  =0.6~0 の範囲で杭頭モーメントが最も大きくなる $R_{fix}$  =0.6 の杭を考慮する(熊本港)。
- ・杭頭曲げモーメントの合計値は、以下の杭で算定した杭頭曲げモーメントの杭本数分 を考慮する。

杭頭固定度  $R_{fix}$  =0.6 を全杭考慮するのは、打設施工精度の向上等で各杭の杭頭固定度が全て最も大きい値( $R_{fix}$  =0.6)となる可能性があると想定したからである。そのときの杭頭曲げモーメントの合計値は、ばらつくケースと比べ最も大きくなる。基礎の支持力の検討に用いる杭頭モーメントの合計値は、以下の荷重分担係数を用いて求めた荷重で杭頭モーメントを算出し、杭本数分を考慮するものとする。

$$R_{\it fix} = 0.60$$
 の杭の荷重分担  $h_{\it i} = \gamma imes \sum h_{\it i} / N$ 

ここに、 $\gamma$ :荷重分担係数(熊本港:1.00)

## 1.3 地盤反力係数の求め方

## (1) 検討概要

港研方式を用いて杭の解析を行うには、地盤反力係数を推定する必要がある。そこで、地盤反力係数の算定方法の検討には、実証試験から求めた値と沢口の方法 (1968) で計算した値とを比較して行った。その比較した結果は、概ね合致することから、設計時に用いる地盤反力係数 $k_s$ の算定には、「沢口の方法」を用いることとした。

## (2) 地盤反力係数を計算で求める方法

通常、地盤反力係数 $k_s$  はN値の増加率の一次式で求められるが、熊本港の地盤はかなり軟弱なため、N値の増加率の推定が困難である。そこで、沢口の方法 (「杭の横抵抗における地盤常数に関する研究」港湾技術研究所報告 Vol.7 No.2,1968) を考慮する。

$$ks = \sqrt{\frac{2\pi}{\varepsilon_{50} \cdot d}}$$

ここに、

50; 非排水せん断における qu/2 のときのひずみ量(=0.01: 試験結果 0.01~0.015)

d ; 杭の直径(=単杭 0.3m、試験堤体用杭 0.25m)

 $; C_{u} = \alpha Z$  の 深度方向の勾配

本試験位置の土質調査結果を用いて係数 を以下の2とおりで検討した。

- ・ベーン試験結果(図 1.3.1)の $\tau_f = 2.78Z$  (Z=0 は地表面)から =2.78 とする。
- ・一軸圧縮試験とベーン試験結果の関係(図 1.3.2)  $C = 0.7\tau$  を考慮し =0.7×2.78=1.95 とする。 (地盤高 DL-2.30m)

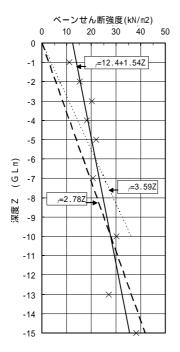



図 - 1.3.1 ベーン試験によるせん断 強度の深度分布

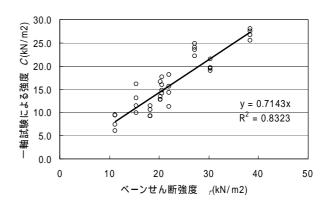



図 1.3.2 ベーンせん断強度と一軸試験 による強度の関係図

## (3) 地盤反力係数 $k_s$ の比較結果

沢口の方法から算出した結果 と試験から算出した結果 の比較を以下のとおり示す。 なお、参考に平成2年度実証試験の結果とも比較した。

今回試験

	土質調査結果	土質調査結果	分析結果	比	率
	= _f /Xとした場合	=Cu/Xとした場合	(フィッティング)	/	/
	(kN/m ^{3.5} )	(kN/m ^{3.5} )	(kN/m ^{3.5} )		
単杭試験	127	89	160	1.26	1.80
実証試験	139	97	160	1.15	1.64

*ベーンせん断強度 *=2.78Z*(kN/m²)

#### 平成2年度試験

	土質調査結果	上質調査結果   土質調査結果		比	率
	= _f /Xとした場合	=Cu/Xとした場合		/	/
	(kN/m ^{3.5} )	(kN/m ^{3.5} )	(kN/m ^{3.5} )		
単杭試験	128	90	170	1.33	1.90
一个儿山八河	120	90	200	1.56	2.23

^{*}ベーンせん断強度 *=2.8Z*(kN/m²)

(参考 1)「平成 14 年度港湾空港技術講演会講演集」独立行政法人港湾空港技術研究所 基礎工研究室菊池喜昭 (参考 2)「軟着堤設計検討(解析)調查委託報告書 平成 2 年 12 月」運輸省第四港湾建設局下関調査設計事務所

- ・沢口の方法 (  $\alpha$  ' =  $\tau_f$  / X ) の結果は、単杭試験  $k_s$  = 127 kN/m³.5, 実証試験  $k_s$  =137kN/m³.5 であった。
- ・分析結果は、 $k_s$  = 160kN/m $^{3.5}$  であり、沢口の方法との比率は 1.26 と、1.15 であった。

## (4) 地盤反力係数 k の算定方法

地盤反力係数 $k_s$ の比較結果より、 $k_s$ の推定誤差と安全代を勘案し、**設計時に推定する** $k_s$  は、ベーン試験の結果を用いて「沢口の方法」により算定できる。

なお、ベーン試験結果を用いて地盤強度の評価を行うにあたり、 $k_s$  の算定時には、切片をゼロとした直線( $\tau_f=\alpha Z$ )を用い、その他の杭・底版の付着力の算定時等には切片を考慮した直線( $\tau_f=\gamma+\beta Z$ )を用いる。(図 - 1.3.3)

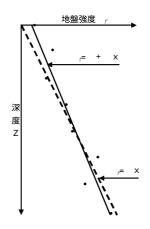



図 - 1.3.3 地盤強度の評価

## 1.4 杭の付着力について

### (1) 検討概要

堤体の鉛直支持力検討は、従来どおり「Vaughan 他の式」を用いる。今回の実証試験において、土圧計およびひずみゲージの計測結果から杭の付着力が発生していることは確認できた。ここでは、杭の付着力を考慮した地盤の鉛直支持力の計算方法を検討する。

#### (2) 実証試験結果のまとめ

ひずみゲージおよび土圧計から杭の付着力を算出した結果、以下のことがわかった。

ひずみゲージから算出した杭の付着力は、前列杭(載荷側)は押し込み力、後列杭は 引き抜き力が作用している。

土圧計の接地圧分布は三角形である。

土圧計の接地圧分布から算出した鉛直力(計測値)と載荷荷重から算出した計算値を 比較した結果、計測値と計算値には差が生じており、杭の付着力が影響していると考 えられる。(最大付着力の約25%)

杭の付着力は、堤体幅・堤体の偏心量の変化に応じて変化する不静定な値であるため、 実証試験結果の値をそのまま設計に用いることはできない。

### (3) 堤体の鉛直支持力の検討方法の考え方

新設計法では、鉛直荷重に対しての抵抗は、底版の鉛直支持力と杭の付着力で受け持つと する。

(鉛直荷重) < {(底版の鉛直支持力)+(杭の付着力)}

1)設計に考慮する杭の付着力の設定

条件により杭の付着力の発揮する量が変化するため、設計に用いる許容付着力の設定を以下に示す。

最大付着力の設定 ( $V_{max}$ )

- ・波圧作用時(最大波) 地震時は、技術基準どおり杭全長を考慮する。
- ・波圧作用時(繰返し荷重)は、繰返し荷重の影響により杭の付着力が低減されるため、図 1.4.1 に示す範囲で杭の付着力が作用すると考える。杭の付着力の作用範囲は、杭の変形を考慮して次のように設定している。

 $1/2\ell_{m1}$ より深い部分は変形が小さく、杭の付着力が有効に作用すると考える。  $1/4\ell_{m1}$ より浅い部分は変形が大きく、杭の付着力の期待はしないと考える。  $1/2\ell_{m1}\sim 1/4\ell_{m1}$  の間は、付着力の 50% を期待すると考える。

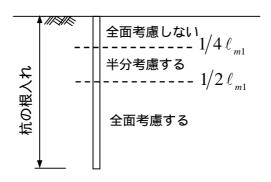



図 - 1.4.1 杭の付着力作用範囲

許容付着力の設定 ( $V_a$ )

許容付着力は、最大付着力を用いて下記に示すように考える。

- ・波圧作用時の杭の許容付着力は、 $V_{
  m max}$  / 3.0 と設定する。
- ・地震時の杭の許容付着力は、 $V_{\rm max}$  / 2.5 と設定する。

#### 2) 堤体の鉛直支持力の計算方法

堤体の鉛直支持力の計算方法においての前提条件を以下に示す。

杭の付着力は、堤体の鉛直支持力の安全率が 1.5 以下のとき、その支持力の不足分を負担するものと考える。

杭の付着力は、許容付着力(V_a)の範囲内で作用する。

杭の付着力は、堤体の鉛直支持力の安全率が 1.5 以上のとき作用しないと考える。(静穏時のとき、杭の付着力は作用しない)

繰返し荷重の影響により地盤強度の低減する範囲は杭周辺であり全体では低減しないため、堤体の鉛直支持力検討時は地盤強度の低減は行わない。

杭の位置は、杭頭モーメント荷重によるねじれの影響範囲を考慮して、底版端部から 0.3 L以上確保するものとする。なお、 L は法線平行方向のスパン長 (バットレス間)である。

地盤の鉛直支持力の計算は「Vaughan 他の式」より計算し、堤体の鉛直支持力の安全率が 1.5 以上となるような $V_1$ 、 $V_2$  を求める。なお、杭の先端支持力は、杭を支持層まで打設しないことと熊本港の地盤はかなり軟弱であるため、微少と考えて無視する。杭の付着力の変化を図 -1.4.2 に、 $V_1$ 、 $V_2$  の設定手順を図 -1.4.3 に示す。

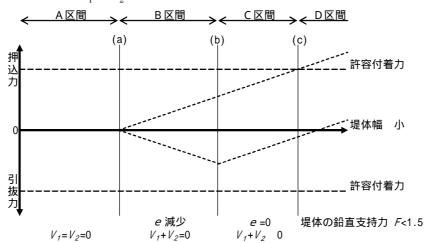



図 - 1.4.2 杭の付着力の変化

- ・杭の付着力を考慮しなくても、堤体の鉛直支持力の安全率がF 1.5 の場合は、杭の付着力は作用しないと考える。これにあたるのが A 区間である。
- ・杭の付着力を考慮しなくても、堤体の鉛直支持力の安全率がF < 1.5 の場合は、堤体の鉛直支持力の安全率がF = 1.5 となるように杭の付着力が作用するものと考える。まず、杭は鉛直力を低減するのではなく、偏心量のみ是正するような挙動を示すと考える。 ( $V_1+V_2=0$ ) これにあたるのが B 区間である。
- ・上記に示す場合でも堤体の鉛直支持力の安全率がF<1.5となるときは偏心量の是正だけでなく、鉛直力を低減するような杭の付着力が作用するものと考える。これにあたるのが C 区間である。
- ・上記の場合でも堤体の鉛直支持力の安全率がF 1.5 を満足しない場合、その堤体幅では成立しないものと考える。これにあたるのはD区間である。

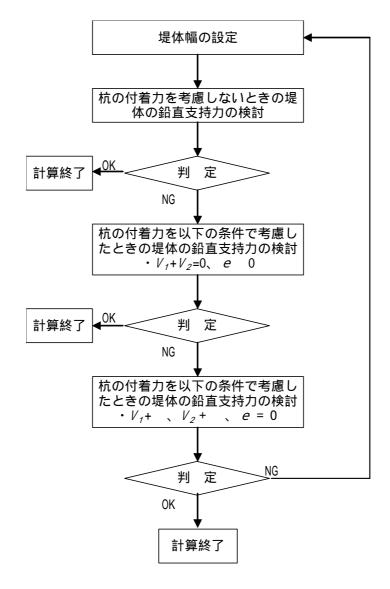



図 - 1.4.3 杭の付着力の設定手順

(4) 堤体の鉛直支持力の検討方法のまとめ 検討方法のまとめを表 - 1.4.1 に示す。

表 - 1.4.1 検討方法のまとめ

	杭に作用	芸芸の場でして影響	
	許容付着力	付着力の低減	荷重の繰返しの影響
波圧作用時 (最大波)	最大付着力 / 3.0	-	
地震時	最大付着力 / 2.5	-	地盤強度は 低減しない
波圧作用時 (繰り返し荷重)	最大付着力 / 3.0	低減する	

## 1.5 荷重の繰り返しに対する地盤反力係数の変化

(1) 繰返し荷重に対する設計の考え方

繰返し荷重による影響の評価は、地盤反力係数の低下量を用いる。以下に地盤反力係数の低下量の設定方法を示す。

参考文献(「港湾空港技術研究所資料 軟弱粘性土地盤着底式くし形構造物の横抵抗特性 に関する研究 No.1039」 菊池喜昭)

繰り返し載荷による地盤の横抵抗の低下は、荷重レベル、繰り返し回数、深度によって異なる。地盤反力係数比 $R_k$ を次式から算定する。

$$R_k = 1 - \alpha_k \cdot \beta_k \cdot \gamma_k$$

 $R_{i}$ :地盤反力係数比

 $\alpha_{\iota}$ :繰り返し荷重に対する補正項

$$\alpha_k = X \cdot y_0 / B$$
 (≤1.0) (図 - 1.5.3 参照)  
 $X = 3.75$  (熊本港)

 $\beta_{\iota}$ :繰り返し回数に対する補正項

Y=25(熊本港)

 $\gamma_{\iota}$ :深度に対する補正項

$$_{k} = \begin{cases} 0 & (z \ge 0.5\ell_{m1}) \\ \frac{0.5\ell_{m1} - z}{0.25\ell_{m1}} & (0.5\ell_{m1} \ge z \ge 0.25\ell_{m1}) \\ 1 & (z \le 0.25\ell_{m1}) \end{cases}$$

 $y_0$ : 処女載荷時の地表面のたわみ、B: 杭幅、n: 繰り返し回数

ℓ_{m1}: 杭頭固定条件での処女載荷時の曲げモーメントの第二ゼロ点の深さ以上の地盤 反力係数比をもとの地盤反力係数に乗じることにより、繰り返し荷重による影響を考慮する。

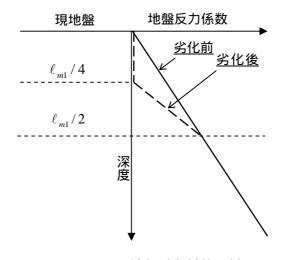
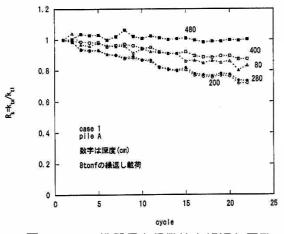
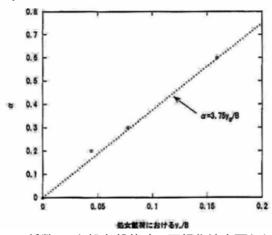




図 - 1.5.1 地盤反力係数の低下


## ・地盤反力係数比と繰返し回数の関係



- ・繰返し載荷によって浅いところほど地盤反 力係数が低下している。
- ・地盤反力係数の低下は、繰返し回数 25 回程 度から一定値に収束する傾向にある。

図 - 1.5.2 地盤反力係数比と繰返し回数の関係

(引用文献:「港湾空港技術研究所資料 No.1039 菊池喜昭」)



・直線の  $lpha_{_k}$  =3.75・ $y_{_0}$  / B の関係が求められる。

図 - 1.5.3 係数  $\alpha_k$  と処女載荷時の正規化地表面たわみ y0/B の関係 (引用文献:「港湾空港技術研究所資料 No.1039 菊池喜昭」)

## ・地盤反力係数比 $R_k$ と平成2年の実験結果の深度分布

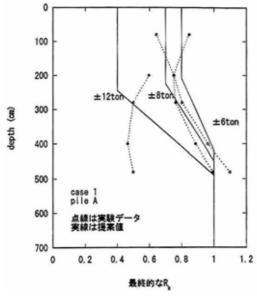



図 - 1.5.4 地盤反力係数比  $R_k$  と平成 2 年の実験結果の深度分布 (引用文献:「港湾空港技術研究所資料 No.1039 菊池喜昭」)

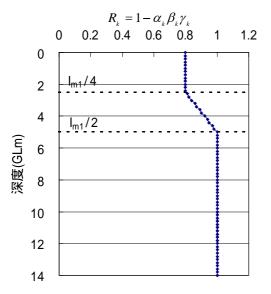
### (2) 繰返し荷重による地盤の影響の確認

単杭試験で実施した繰返し載荷による地盤の影響は、前述した計算により推定した地盤反力係数比 $R_k$ を用いて港研方式から算定した曲げモーメント分布値と計測値を比較することによって確認できる。

## 1) 地盤反力係数比 R。 および地盤反力係数の計算結果

図 - 1.5.5、1.5.6 に地盤反力係数比 $R_k$  および地盤反力係数の計算結果を示す。

ケース 1 繰返し回数 5回目(段階載荷第2サイクル直後の繰返し載荷試験)


ケース 2 繰返し回数 10 回目(段階載荷第3サイクル直後の繰返し載荷試験)

計算条件の初回とは、各繰返し載荷の処女載荷(0回目)のことであり、そのときの変位、

 $k_s$ 、 $\ell_{m1}$ を示す。

ケース1	繰返し回数	5回目					
	計算条件						
初回荷重	T(kN)	29.00					
初回変位	yo(m)	0.08					
杭幅	B(m)	0.30					
回数	n(回)	5					
初回I _{m1}	$l_{m1}(m)$	10.00					
初回ks	$ks(kN/m^{3.5})$	120.00					

ケース2	繰返し回数	10回目					
	計算条件						
初回荷重	T(kN)	50.00					
初回変位	yo(m)	0.20					
杭幅	B(m)	0.30					
回数	n(回)	10					
初回I _{m1}	l _{m1} (m)	12.00					
初回ks	$ks(kN/m^{3.5})$	90.00					






図 - 1.5.5(a) 地盤反力係数比 $R_{k}$  (5 回目)

図 - 1.5.5(b) 地盤反力係数比 R_k (10 回目)

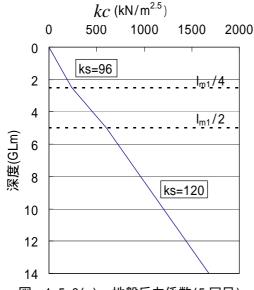
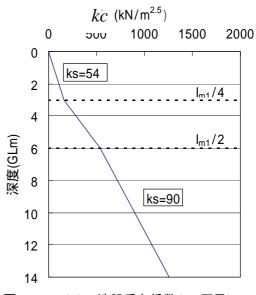
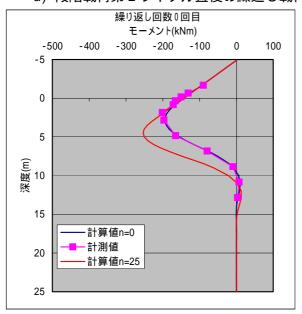
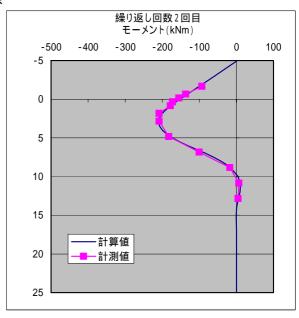


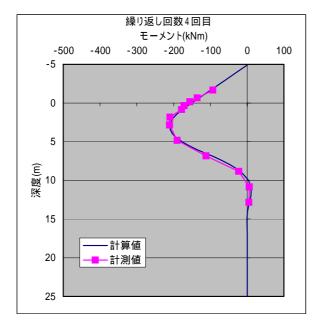

図 - 1.5.6(a) 地盤反力係数(5 回目)

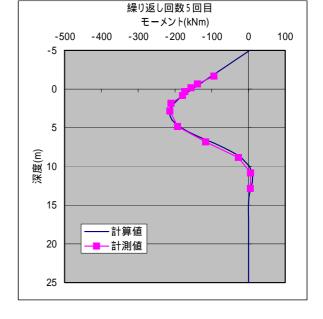





図 - 1.5.6(b) 地盤反力係数(10 回目)

## 2) 曲げモーメント分布の比較結果

計測値と計算値はほぼ一致し、繰返し載荷により、推定した地盤反力係数の低下量と同等の低下が発生したことが確認されている。


## a) 段階載荷第2サイクル直後の繰返し載荷試験

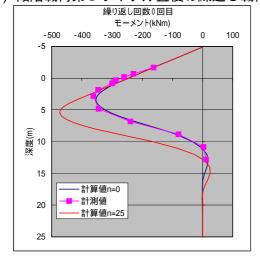


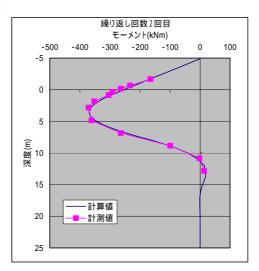



荷重(kN)		計測値	計算值	比率
29.1	変位(cm)	19.12	19.04	1.00

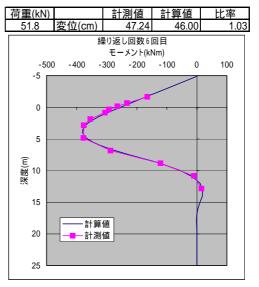
荷重(kN)		計測値	計算値	比率
31.0	变位(cm)	21.49	21.19	1.01

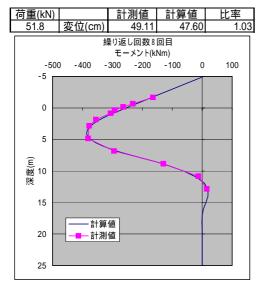


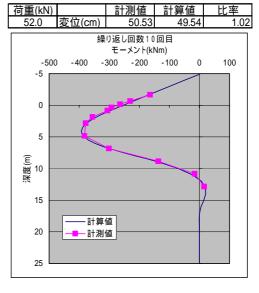




荷重(kN)		計測値	計算值	比率
30.8	变位(cm)	22.59	21.68	1.04

荷重(kN)		計測値	計算值	比率
31.2	变位(cm)	23.11	22.34	1.03


図 - 1.5.7 曲げモーメント分布図


## b) 段階載荷第3サイクル直後の繰返し載荷試験






荷重(kN	)	計測値	計算値	比率
50.1	变位(cm)	43.86	42.83	1.02
	4	繰り返し回数41	 □目	
		モーメント(ki		
-5	00 -400 -	300 -200	-100 0	100
-5				
0				
	· 🗾		'	
	<b></b>			
5	<u>-</u>			
		****		
深度(m)				
账				
				,
15			/	
	計算	値		
20	─ 計測			
	_ птж			
25				







重(kN)		計測値	計算値	比率	荷重	(kN)		計測値	計算値	比率
51.9	变位(cm)	51.71	51.25	1.01	5′	1.9	変位(cm)	52.74	53.28	0

図 - 1.5.8 曲げモーメント分布図

### (3) 繰返しの影響を考慮する際の設計波の設定

平成2年の現地における繰返し実験の結果では、途中の荷重レベルで繰返し載荷が生じても、次の荷重レベルにおいて、繰返し載荷を続けていくうちに前の荷重レベルでの繰返し載荷の影響は次第になくなっていくことが確認されている。すなわち、最大荷重が他の荷重に比べて十分に大きい場合には、その一回の荷重によって杭の変形が支配され、既往の荷重の影響がほとんどなくなる。従って、繰返し荷重の影響を考慮する必要があるのは、高い波が比較的長時間作用するために、そのことによる堤体の変位が一回きりの最大荷重の影響より大きくなると想定されるときである。(引用文献:「港湾空港技術研究所資料 軟弱粘性土地盤着底式くし形構造物の横抵抗特性に関する研究 No.1039 菊池喜昭」)

繰返しの影響を考慮する際の設計波は、堤体の変位が1回発生する最高波ではなく、長時間堤体に作用する高い波の中で繰返し作用する波を設定する必要がある。

地盤反力係数の低下が収束する繰返し回数は、平成2年の実験から25回前後と考えられるため、設計に用いる波には、1波群中に25回程度の頻度の来襲波を考慮する。

そこで、最高波高は 1/250 最大波高を用いているため、25/250=1/10 として

#### 繰返しの影響を考慮する際の設計波を

1/10 最大波(H_{1/10}、T_{1/10}) と設定する。

### 繰返し荷重に対する設計の考え方

繰返し荷重に対する設計には、地盤反力係数 kg の低下を考慮する。

繰返し荷重による地盤反力係数 $k_s$  の低下量は、地盤反力係数比 $R_k(R_k=1-\alpha_T\beta_T\gamma_T)$  の算定をすることにより求める。

設計荷重は、地盤反力係数比  $R_{k}(R_{k}=1-lpha_{T}eta_{T}\gamma_{T})$  を考慮するとき 1/10 最大波とする。

## 2. 基本設計実施のための参考事例計算

## 2.1 設計条件の整理

- (1) 計画条件
  - 1) 透過性の要請 有り
  - 2) 反射波防止の要請 有り
- (2) 自然条件
  - 1) 潮位 H.W.L +4.50m L.W.L ±0.00m
  - 2) 波 浪

	沖   波		堤 前 波		隅角部	設言	† 波		
再現期間	波向	Ηο	То	Hmax	H _{1/3}		の波高	Hmax	H _{1/3}
		(m)	(s)	(m)	(m)	(°)	増大率	(m)	(m)
50年	WSW	2.7	5.5	4.0	2.4	57.5	1.126	4.5	2.7
10年	NW	2.3	5.0	3.5	4.0	80.0	-	3.5	2.0

## 3) 現地盤高

D.L. - 2.2~ - 2.5m (防波堤法線上)

## 4) 土 質

設計に用いる地盤強度は、図 - 2.1.1 に示すようにベーンせん断試験結果の平均値(最小二乗法)を基本に評価する。

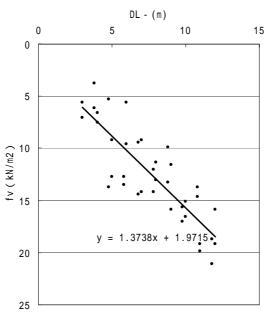



図 - 2.1.1 ベーンせん断試験によるせん断強度の深度分布

 $\tau_f = 1.97 + 1.37Z$  ( Z = 0 at  $D.L \pm 0.00m$  )

## (3) 施工条件

1) ケーソン製作場所の制限

ケーソン製作ヤード 上載荷重 3 t / m²

2) 堤体据付け時の制限及び堤体重量

施工性、経済性から 700 t 吊りのクレーンを使用することとされているため、クレーン の吊り上げ能力より、堤体重量は最大 640 t 程度とする。

## (4) 設計計算条件

1) 天端高

H.W.L+0.6×H_{1/3}=+4.5m+0.6×2.7m=+6.12m +6.1m

2) 設計震度

k = 0.17 ( 地域別震度  $0.12 \times$  地盤種別係数  $1.2 \times$  重要度係数 1.2 = 0.173 )

#### 3) 安全率

	Hmax作用時	地震時	H _{1/10} 作用時
地盤の鉛直支持力	1.5	1.5	1.5
杭の許容付着力	杭の最大付着力/3.0	杭の最大付着力/3.0	杭の最大付着力/2.5

## 4) 鋼材の許容応力度

技術基準 (平成 11 年制定)(P-318)による。

5) 鋼材の防食対策

H鋼杭の防食対策は電気防食工法とし、流電陽極方式(耐用年数50年)とする。なお、電気防食の効率は90%とし、10%の腐食代を考慮する。

水中部(杭頭部) 0.1 mm

0.1 mm/年×50年×0.1=0.5 mm

海底泥層中部

0.03 mm/年×50年×0.1=0.15 mm

## 6) 構造形式

・透過性と反射波防止の必要性より、構造形式は消波機能(スリット)を有する「逆型」 (くし型)とする。

## 2.2 比較検討の事例

軟着堤の基本断面については、杭諸元の最小化と堤体幅の最小化は同時に満足できないため、適切な杭諸元と堤体幅に関する比較検討を行い、最適な断面を選定する必要がある。比較検討の結果、最適な杭諸元と堤体幅は、ケース2となった。比較検討ケースを表 - 2.2.1 に示し、経済性に関する比較検討結果を図 - 2.2.1 に示す。

表 - 2.2.1 比較検討ケース

	H鋼杭長	堤体諸元(m)			堤体重量	備考
	( m )	L	В	Н	(t)	Mi-5
ケース 1	20.4	15.0	11.4	8.5	587.3	1.21 I _{m1}
ケース 2	20.5	15.0	11.4	8.5	587.3	
ケース3	21.0	15.0	11.2	8.5	581.6	
ケース4	21.5	15.0	11.0	8.5	576.0	
ケース5	22.0	15.0	10.8	8.5	570.3	
ケース 6	22.5	15.0	10.6	8.5	564.7	
ケース7	23.0	15.0	10.4	8.5	553.1	
ケース8	23.5	15.0	10.2	8.5	547.6	
ケース9	24.0	15.0	10.1	8.5	544.8	

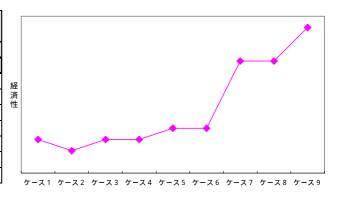



図 - 2.2.1 比較検討結果

## 2.3 安定計算の事例

熊本港の軟着堤を対象とした安定計算事例を以下に示す。安定計算を行った標準断面図を図 - 2.3.1 に示す。

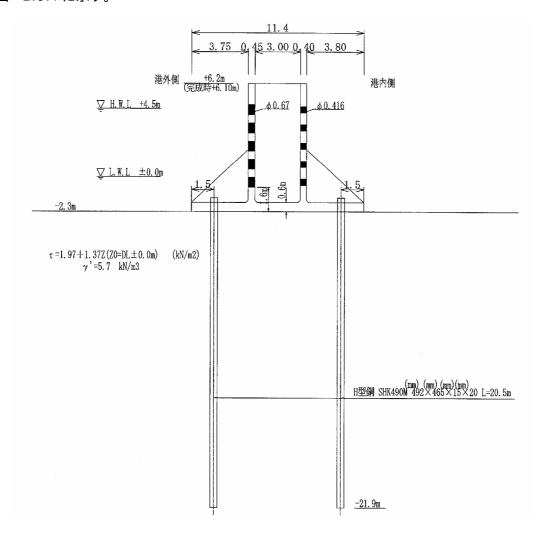



図 - 2.3.1 標準断面図

## 2.3.1 外力の計算

設計に用いる外力は、波力、自重、浮力、地震力および動水圧とする。

#### 2.3.1.1 波力

(1) 押し波時

水平波力については、前壁、後壁ごとに合田波圧に対する低減率を乗じることにより求める。

1) 合田波圧の算定

$$η^* = 0.75 (1 + \cos β) λ_1 H_D$$
= 0.75× (1 + cos 0°) × 1.0 × 4.5
= 6.75m

$$\alpha_1 = 0.6 + \frac{1}{2} \left\{ \frac{4\pi h / L}{\sin h(4\pi h / L)} \right\}^2$$

= 0.6 + 
$$\frac{1}{2} \left\{ \frac{4 \times \pi \times 6.900/38.298}{\text{si nh} (4 \times \pi \times 6.900/38.298)} \right\}^{2}$$

= 0.713

$$\alpha_2 = \min \left[ \frac{h_b - d}{3h_b} \left( \frac{H_D}{d} \right)^2, \frac{2d}{H_D} \right]$$

$$= \min \left[ \frac{6.914 - 6.300}{3 \times 6.914} \left( \frac{4.50}{6.300} \right)^2, \frac{2 \times 6.300}{4.50} \right]$$

= 0.015

$$\alpha_3 = 1 - \frac{h'}{h} \left\{ 1 - \frac{1}{\cosh(2\pi h/L)} \right\}$$

$$= 1 - \frac{6.30}{6.90} \times \left\{ 1 - \frac{1}{\cosh(2 \times \pi \times 6.90 / 38.298)} \right\}$$

= 0.620

ここに、 *: 静水面上で波圧強度が0となる高さ(m)

:波の主方向から ± 15°の範囲内で最も危険な方向と直立壁の法線の垂線が成す角度(0°)

1: 波圧の補正係数(標準は、1.0)

 $H_n$ :設計波高(4.5m)

h:直立壁の前面における水深(6.900m)

L:水深hにおける計算に用いる波長(38.298m)

h_b: 直立壁の前面から沖側へ有義波高の 5 倍の距離の地点における水深 (6.914m)

d:フーチング上の水深(6.300m)

h : フーチング上のの水深(6.300m)

## ・波圧強度の算定

合田波圧の波圧分布を図 - 2.3.2 に示す。

$$P_{1} = 0.5 (1 + \cos \beta) (\alpha_{1} \lambda_{1} + \alpha_{2} \lambda_{2} \cos^{2} \beta) \omega_{0} H_{D}$$

$$= 0.5 \times (1 + \cos 0^{\circ}) \times (0.713 \times 1.0 + 0.015 \times 0.0 \times \cos^{2} 0^{\circ}) \times 10.1 \times 4.5$$

 $= 32.41 \text{ kN/m}^2$ 

$$P_{2} = \frac{P_{1}}{\cosh(2\pi h/L)}$$

$$= \frac{32.41}{\cosh(2 \times \pi \times 6.900/38.298)}$$

 $= 18.93 \, \text{kN/m}^2$ 

$$P_3 = \alpha_3 P_1$$

 $= 0.620 \times 32.41$ 

=20. 10 kN/m²

$$P_4 = P_1 \times (4.5 + 6.75 - 6.1) / 6.75$$
  
= 32.41×(4.50 + * - 6.10)/

 $= 24.73 \text{ kN/m}^2$ 

ここに、 $P_{\!\scriptscriptstyle \parallel}$ :静水面における波圧強度 ( $kN/m^2$ )

 $P_2$ :海底面における波圧強度 ( $kN/m^2$ )

 $P_3$ : 底版上における波圧強度  $(kN/m^2)$ 

 $P_{\scriptscriptstyle A}$ : 堤体天端における波圧強度 ( $kN/m^2$ )

2:波圧の補正係数(消波ケーソンの場合、0.0)

 $\omega_{\scriptscriptstyle 0}$ :海水の単位体積重量  $(\,$  kN/ 3  )

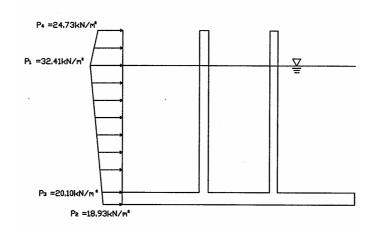



図 - 2.3.2 波圧分布図(合田波圧)

## 2) 前壁に作用する波力の算定

前壁に作用する水平波力は、次式により求める。

合田波圧 $\times$  (1 - 前壁開口率 $\varepsilon_F$ )

$$\varepsilon_F = \frac{\left(\frac{0.67}{2}\right)^2 \times \pi \times 60}{\left(8.50 - 0.60\right) \times 15.00}$$
= 0.1785

ここに、前壁の穴の直径 0.67m

穴の個数60個

堤体高さ 8.50m

底版厚さ 0.60m

堤体延長 15.00m

## ・波圧強度の算定

前壁に作用する波圧分布を図 - 2.3.3 に示す。

$$P_{F1} = P_1 \times (1 - \varepsilon_F)$$
  
= 32. 41×(1 - 0. 1785)

 $= 26.63 \, \text{kW/m}^2$ 

$$P_{F2} = P_2 \times (1 - \varepsilon_F)$$
  
= 18. 93×(1 - 0. 1785)

 $= 15.55 \, \text{kW} \, \text{m}^2$ 

$$P_{F3} = P_3 \times (1 - \varepsilon_F)$$
  
= 20. 09× (1 - 0. 1785)

 $= 16.52 \, \text{kW} \, \text{m}^2$ 

$$P_{F4} = P_4 \times (1 - \varepsilon_F)$$
  
= 24. 73× (1 - 0. 1785)

 $= 20.32 \text{ kN/m}^2$ 

ここに、 $P_{F1}$ :前壁の静水面における波圧強度  $(kN/m^2)$ 

 $P_{F2}$ : 前壁の海底面における波圧強度( $kN/m^2$ )  $P_{F3}$ : 前壁の底版上における波圧強度( $kN/m^2$ )  $P_{F4}$ : 前壁の堤体天端における波圧強度( $kN/m^2$ )

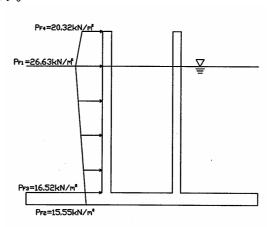



図 - 2.3.3 波圧分布図(押し波、前壁)

## 3) 後壁に作用する波力の算定

後壁に作用する水平波力は、次式により求める。

合田波圧×  $_{0}$ ×(1-後壁開口率 $_{R}$ )

$$\varepsilon_B = \frac{\left(\frac{0.416}{2}\right)^2 \times \pi \times 60}{\left(8.50 - 0.60\right) \times 15.00}$$

= 0.0688

ここに、前壁の穴の直径 0.416m

穴の個数60個

堤体高さ 8.50m

底版厚さ 0.60m

堤体延長 15.00m

₀=0.15 (実験結果より決まる定数)

### ・波圧強度の算定

後壁に作用する波圧分布を図 - 2.3.4 に示す。

$$P_{B1} = P_1 \times \alpha_0 \times (1 - \varepsilon_B)$$
  
= 32. 41×0. 15×(1 - 0. 0688)

$$= 4.53 \text{ kN/m}^2$$

$$P_{B2} = P_2 \times \alpha_0 \times (1 - \varepsilon_B)$$
  
= 18. 93×0. 15×(1 - 0. 0688)

$$P_{B3} = P_3 \times \alpha_0 \times (1 - \varepsilon_B)$$
  
= 20. 09×0. 15×(1 - 0. 0688)

 $= 2.81 \, \text{kV/m}^2$ 

$$P_{B4} = P_4 \times \alpha_0 \times (1 - \varepsilon_B)$$
  
= 24. 73×0. 15×(1 - 0. 0688)

 $= 3.45 \, \text{kW/m}^2$ 

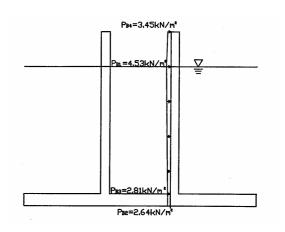



図 - 2.3.4 波圧分布図(押し波、後壁)

ここに、 $P_{\rm RI}$ :後壁の静水面における波圧強度  $({
m kN/m^2})$ 

 $P_{\it B2}$ :後壁の海底面における波圧強度 ( ${\it kN/m^2}$ )

 $P_{\rm \scriptscriptstyle B3}$ :後壁の底版上における波圧強度  $(\,{
m kN/m^2}\,)$ 

 $P_{RA}$ :後壁の堤体天端における波圧強度  $(kN/m^2)$ 

## 4) 底版、フーチングに作用する波力

底版、フーチングに作用する鉛直波力は以下のとおり算出する。波圧分布を図 - 2.3.5 に示す。

$$P_5 = P_3 \times \cos\left(\frac{2\pi I_1}{L'}\right)$$
$$= 20.09 \times \cos\left(\frac{2 \times \pi \times 3.750}{37.162}\right)$$

 $= 16.20 \text{ kN/m}^2$ 

 $P_6 = \alpha_0 P_3$ 

 $= 0.15 \times 20.09$ 

 $= 3.02 \text{ kN/m}^2$ 

ここに、 $P_{\rm S}$ :前側底版 (フーチング) 天端の波圧強度 (kN/m²)

 $P_6$ : 底版天端の波圧強度( $kN/m^2$ )  $l_1$ : 前側底版(フーチング)幅(m)

L':底版上水深における波長(m)

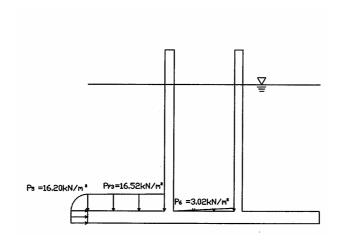



図 - 2.3.5 波圧分布図 (押し波、底版、フーチング)

## 5) 波圧合力および波力によるモーメント

## a) 水平波力合力

水平波力合力およびそのモーメントの算定結果を示す。

	波圧強度	h	合力	作用高さ	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
	20.32	1.60	16.25	7.97	129.48
	26.63	1.60	21.30	7.43	158.34
前壁	26.63	6.30	83.88	4.80	402.60
	16.52	6.30	52.02	2.70	140.46
	小計		173.45		830.88
	3.45	1.60	2.76	7.97	22.01
	4.53	1.60	3.62	7.43	26.92
後壁	4.53	6.30	14.26	4.80	68.45
	2.81	6.30	8.85	2.70	23.88
	小計		29.49		141.27
前側底版	16.20	0.60	9.72	0.30	2.92
און ציו וגיון וניפ	小計		9.72		2.92
	合 計		212.66		975.07

## b) 鉛直波力合力

鉛直波力合力およびそのモーメントの算定結果を示す。

	波圧強度	I	合力	作用位置	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
	16.20	3.75	30.37	10.15	308.24
前側底版	20.10	3.75	37.69	8.90	335.48
	小計		68.06		643.72
中央底版	3.02	3.00	4.53	5.20	23.52
中大低級	小計		4.53		23.52
	合 計		72.59		667.24

## (2) 引き波時

引き波時の波力を算定する。引き波時の波力分布を図 - 2.3.6 に示す。

$$P_8 = 0.5\omega_0 H_D$$
  
= 0.5×10.1×4.50  
= 22.73 kN/m²

$$P_{9} = P_{8} \times \cos\left(\frac{2\pi I_{1}}{L'}\right)$$
$$= 22.73 \times \cos\left(\frac{2 \times \pi \times 3.75}{37.162}\right)$$

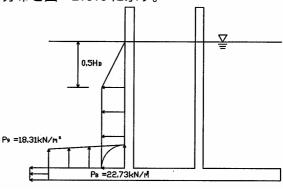



図 - 2.3.6 波圧分布図(引き波)

 $= 18.31 \, kN/m^2$ 

ここに、 $P_8$ : 前側底版 (フーチング) 天端の波圧強度 ( $kN/m^2$ )

 $P_{g}$ :前側底版 (フーチング) 天端の波圧強度 ( $kN/m^{2}$ )

 $l_1$ :前側底版 (フーチング) 幅 (m) L': 底版上水深における波長 (m)

#### 1) 水平波力合力

水平波力合力およびそのモーメントの算定結果を示す。

	波圧強度	h	合力	作用高さ	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
	22.73	2.25	25.57	5.40	138.05
前 壁	22.73	4.05	92.04	2.63	241.60
	小計		117.60		379.65
前側底版	18.31	0.60	10.99	0.30	3.30
削削加太水	小計		10.99		3.30
	合 計		128.59		382.95

### 2) 鉛直波力合力(上向き)

鉛直波力合力およびそのモーメントの算定結果を示す。

	波圧強度	I	合力	作用位置	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
	18.31	3.75	34.33	1.25	42.91
前側底版	22.73	3.75	42.61	2.50	106.52
	小計		76.94		149.43
	合 計		76.94		149.43

#### (3) 鉛直波力最大時

鉛直波力最大時の波力を算定する。水平波力分布を図 - 2.3.7 に鉛直波力分布を図 - 2.3.8 に示す。

#### 1)水平波力の算定

鉛直波力最大時の水平波力は、合田波圧に を乗じて算出する。

$$P_{\nu_1} = P_1 \times \lambda$$

 $= 32.41 \times 0.6$ 

 $= 19.45 \text{ kN/m}^2$ 

$$P_{\nu_2} = P_2 \times \lambda$$

 $= 18.93 \times 0.6$ 

 $= 11.36 \text{ kN/m}^2$ 

$$P_{V3} = P_3 \times \lambda$$

 $= 20.10 \times 0.6$ 

 $= 12.06 \text{ kN/m}^2$ 

$$P_{\nu_A} = P_A \times \lambda$$

 $= 24.73 \times 0.6$ 

 $= 14.84 \text{ kN/m}^2$ 

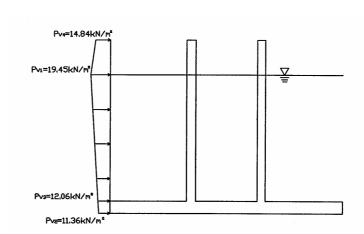



図 - 2.3.7 波圧分布図 (鉛直波力最大時、水平波力)

ここに、 $P_{V1}$ :鉛直波力最大時の静水面における波圧強度  $(kN/m^2)$ 

 $P_{V2}$ :鉛直波力最大時の海底面における波圧強度 ( $kN/m^2$ )

 $P_{V3}$ :鉛直波力最大時の底版上における波圧強度  $(kN/m^2)$ 

 $P_{VA}$ :鉛直波力最大時の堤体天端における波圧強度  $(kN/m^2)$ 

:0.6(実験結果により定まる定数)

#### 2)鉛直波力の算定

$$P_{\nu_5} = \alpha_1 \cdot \omega_0 H_0$$

 $= 0.8 \times 10.1 \times 4.50$ 

 $= 36.36 \, kN/m^2$ 

$$P_{V6} = \alpha_2 ' \omega_0 H_D$$

 $= 0.65 \times 10.1 \times 4.50$ 

 $= 29.54 \text{ kN/m}^2$ 

$$P_{\nu\tau} = \alpha_3 \cdot \omega_0 H_{\rho}$$

 $= 0.3 \times 10.1 \times 4.50$ 

 $= 13.64 \text{ kN/m}^2$ 

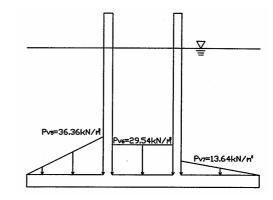



図 - 2.3.8 波圧分布図(鉛直波力最大時、鉛直波力)

ここに、 $P_{V5}$ :前側底版 (フーチング)における波圧強度  $(kN/m^2)$ 

 $P_{V6}$ : 底版における波圧強度( $kN/m^2$ )

 $P_{V7}$ :後側底版 (フーチング) における波圧強度  $(kN/m^2)$ 

2 : 0.65 (実験結果により定まる定数)

3 :0.3(実験結果により定まる定数)

## 3) 波圧合力および波力のモーメント

## a) 水平波力

水平波力合力およびそのモーメントの算定結果を示す。

	波圧強度	h	合力	作用高さ	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
	14.84	1.60	11.87	7.97	94.57
	19.45	1.60	15.56	7.43	115.65
	19.45	6.30	61.26	4.80	294.05
水平波力	12.06	6.30	38.00	2.70	102.59
	12.06	0.60	3.62	0.40	1.45
	11.36	0.60	3.41	0.20	0.68
	小計		133.71		608.99
	合 計		133.71		608.99

## b) 鉛直波力

鉛直波力合力およびそのモーメントの算定結果を示す。

鉛直波力	波圧強度	I	合力	作用位置	モーメント
	$(kN/m^2)$	(m)	(kN/m)	(m)	(kNm/m)
前側底版	36.36	3.75	68.18	8.90	606.76
	小計		68.18		606.76
中央底版	29.54	3.00	88.63	5.70	505.18
中大瓜瓜	小計		88.63		505.18
後側底版	13.64	3.80	25.91	2.53	65.63
1安1別戊10	小計		25.91		65.63
	合 計		182.71		1177.56

## 2.3.1.2 自重

## (1) 自重の算定

自重の算定は以下のとおりである。

	1				107人ハ	\/:				-	147
名称	H	Β,	L		控除Ⅴ	Vi	N	Vİ	W	X	W x
	(m)	(m)	(m)		(m ³ )	(m ³ )	(個)	(m ³ )	(kN)	(m)	(kNm)
底版	0.60	11.40	15.00	1	2.47	100.13	1	100.13	2403.10	5.70	13697.67
前壁	7.90	0.45	15.00	1	9.52	43.81	1	43.81	1051.34	7.43	7806.18
後壁	7.90	0.40	15.00	1	3.26	44.14	1	44.14	1059.31	4.00	4237.25
前側端部バットレス	3.50	3.75	0.35	1/2		2.30	2	4.59	110.25	8.90	981.23
中央側壁	7.90	3.00	0.30	1		7.11	2	14.22	341.28	5.70	1945.30
後側端部バットレス	3.50	3.80	0.35	1/2		2.33	2	4.66	111.72	2.53	283.02
前側中央部バットレス	3.50	3.75	0.35	1/2		2.30	2	4.59	110.25	8.90	981.23
中央隔壁	7.90	3.00	0.30	1		7.11	2	14.22	341.28	5.70	1945.30
後側中央部バットレス	3.50	3.80	0.35	1/2		2.33	2	4.66	111.72	2.53	283.02
前壁ハンチ(前側下部)	0.20	0.20	12.40	1/2		0.25	1	0.25	5.95	7.72	45.93
前壁ハンチ(後側下部)	0.20	0.20	12.50	1/2		0.25	1	0.25	6.00	7.13	42.80
後壁八ンチ(前側下部)	0.20	0.20	12.50	1/2		0.25	1	0.25	6.00	4.27	25.60
後壁ハンチ(後側下部)	0.20	0.20	12.40	1/2		0.25	1	0.25	5.95	3.73	22.22
前側側壁ハンチ(下部)	0.20	3.55	0.20	1/2		0.07	2	0.14	3.41	9.63	32.80
前側側壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	2	0.13	3.17	7.72	24.45
前側側壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.32	7.74	2.48
中央側壁ハンチ(下部)	0.20	2.60	0.20	1/2		0.05	2	0.10	2.50	5.70	14.23
中央側壁ハンチ(前側垂直)	7.70	0.20	0.20	1/2		0.15	2	0.31	7.39	7.13	52.73
中央側壁ハンチ(後側垂直)	7.70	0.20	0.20	1/2		0.15	2	0.31	7.39	4.27	31.54
中央側壁ハンチ(前側偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.32	7.11	2.28
中央側壁ハンチ(後側偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.32	4.29	1.37
後側側壁ハンチ(下部)	0.20	3.60	0.20	1/2		0.07	2	0.14	3.46	1.80	6.22
後側側壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	2	0.13	3.17	3.73	11.83
後側側壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.32	3.71	1.19
前側控壁ハンチ(下部)	0.20	3.55	0.20	1/2		0.07	4	0.28	6.82	9.63	65.60
前側控壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	4	0.26	6.34	7.72	48.89
前側控壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.64	7.74	4.95
中央隔壁ハンチ(下部)	0.20	2.60	0.20	1/2		0.05	4	0.21	4.99	5.70	28.45
中央隔壁ハンチ(前側垂直)	7.70	0.20	0.20	1/2		0.15	4	0.62	14.78	7.13	105.46
中央隔壁ハンチ(後側垂直)	7.70	0.20	0.20	1/2		0.15	4	0.62	14.78	4.27	63.08
中央隔壁ハンチ(前側偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.64	7.11	4.55
中央隔壁ハンチ(後側偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.64	4.29	2.75
後側控壁ハンチ(下部)	0.20	3.60	0.20	1/2		0.07	4	0.29	6.91	1.80	12.44
後側控壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	4	0.26	6.34	3.73	23.65
後側控壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.64	3.71	2.37
( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					15.25			239.98	5759.43	5.70	32840.05

(2) 浮力の算定 浮力の算定は以下のとおりである。

67.1h		_	,		控除Ⅴ	Vi	N	٧i	W	χ	Wx
名称	Н	В	L		(m ³ )	(m ³ )	(個)	(m ³ )	(kN)	(m)	(kNm)
底版	0.60	11.40	15.00	1	2.47	100.13	1	100.13	1011.30	5.70	5764.44
前壁	7.90	0.45	15.00	1	9.52	43.81	1	43.81	442.44	7.43	3285.10
後壁	7.90	0.40	15.00	1	3.26	44.14	1	44.14	445.79	4.00	1783.17
前側端部バットレス	3.50	3.75	0.35	1/2		2.30	2	4.59	46.40	8.90	412.93
中央側壁	7.90	3.00	0.30	1 1		7.11	2	14.22	143.62	5.70	818.65
後側端部バットレス	3.50	3.80	0.35	1/2		2.33	2	4.66	47.02	2.53	119.11
前側中央部バットレス 中央隔壁	3.50 7.90	3.75 3.00	0.35 0.30	1/2		2.30 7.11	2	4.59 14.22	46.40 143.62	8.90 5.70	412.93 818.65
<u>中天隔室</u> 後側中央部バットレス	3.50	3.80	0.35	1/2		2.33	2	4.66	47.02	2.53	119.11
前壁ハンチ(前側下部)	0.20	0.20	12.40	1/2		0.25	1	0.25	2.50	7.72	19.33
前壁ハンチ(後側下部)	0.20	0.20	12.50	1/2		0.25	1	0.25	2.53	7.13	18.01
後壁ハンチ(前側下部)	0.20	0.20	12.50	1/2		0.25	1	0.25	2.53	4.27	10.77
後壁ハンチ(後側下部)	0.20	0.20	12.40	1/2		0.25	1	0.25	2.50	3.73	9.35
前側側壁ハンチ(下部)	0.20	3.55	0.20	1/2		0.07	2	0.14	1.43	9.63	13.80
前側側壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	2	0.13	1.33	7.72	10.29
前側側壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.13	7.74	1.04
中央側壁ハンチ(下部)	0.20	2.60	0.20	1/2		0.05	2	0.10	1.05	5.70	5.99
中央側壁ハンチ(前側垂直)	7.70	0.20	0.20	1/2		0.15	2	0.31	3.11	7.13	22.19
中央側壁ハンチ(後側垂直)	7.70	0.20	0.20	1/2		0.15	2	0.31	3.11	4.27	13.27
中央側壁ハンチ(前側偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.13	7.11	0.96
中央側壁ハンチ(後側偶角部)	0.20	0.20	0.20	5/6		0.01	2	0.01	0.13	4.29	0.58
後側側壁ハンチ(下部) 後側側壁ハンチ(垂直)	0.20 3.30	3.60	0.20	1/2		0.07	2	0.14	1.45 1.33	1.80 3.73	2.62
後側側壁ハンチ(垂直) 後側側壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.07 0.01	2	0.13 0.01	0.13	3.73	4.98 0.50
後周囲室ハンテ(両用品) 前側控壁ハンチ(下部)	0.20	3.55	0.20	1/2		0.07	4	0.01	2.87	9.63	27.61
前側控壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	4	0.26	2.67	7.72	20.58
前側控壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.27	7.74	2.08
中央隔壁ハンチ(下部)	0.20	2.60	0.20	1/2		0.05	4	0.00	2.10	5.70	11.97
中央隔壁ハンチ(前側垂直)	7.70	0.20	0.20	1/2		0.15	4	0.62	6.22	7.13	44.38
中央隔壁ハンチ(後側垂直)	7.70	0.20	0.20	1/2		0.15	4	0.62	6.22	4.27	26.55
中央隔壁ハンチ(前側偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.27	7.11	1.91
中央隔壁ハンチ(後側偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.27	4.29	1.16
後側控壁ハンチ(下部)	0.20	3.60	0.20	1/2		0.07	4	0.29	2.91	1.80	5.24
後側控壁ハンチ(垂直)	3.30	0.20	0.20	1/2		0.07	4	0.26	2.67	3.73	9.95
後側控壁ハンチ(偶角部)	0.20	0.20	0.20	5/6		0.01	4	0.03	0.27	3.71	1.00
					15.25			239.98	2423.76	5.70	13820.19
名称	н	В	L		控除Ⅴ	۷i	N	٧i	W	Х	W x
					(m ³ )	(m ³ )	(個)	(m ³ )	(kN)	(m)	(kNm)
前壁	1.60	0.45	15.00	1	1.93	-8.87	1	-8.87	-89.61	7.43	-665.34
後壁	1.60	0.40	15.00	1 1	0.66	-8.94	1	-8.94	-90.29	4.00	-361.15
前側端部バットレス	0.00	0.00	0.35	1/2		0.00	2	0.00	0.00	0.00	0.00
中央側壁	1.60	3.00	0.30	1 /2		-1.44	2	-2.88	-29.09	5.70	-165.80
後側端部バットレス	0.00	0.00	0.35	1/2		0.00	2	0.00	0.00	0.00	0.00
前側中央部バットレス 中央隔壁	0.00 1.60	0.00 3.00	0.35 0.30	1/2		0.00 -1.44	2	0.00 -2.88	0.00 -29.09	0.00 5.70	0.00 -165.80
中犬隔壁 後側中央部バットレス	0.00	0.00	0.35	1/2		0.00	2	0.00	0.00	0.00	0.00
夜間中大部パッドレス   前側側壁ハンチ(垂直)	0.00	0.00	0.33	1/2		0.00	2	0.00		0.00	0.00
中央側壁ハンチ(前側垂直)	1.60	0.20	0.20			-0.03	2	-0.06	-0.65	7.13	-4.61
中央側壁ハンチ(後側垂直)	1.60	0.20	0.20	1/2		-0.03		-0.06	-0.65	4.27	-2.76
後側側壁ハンチ(垂直)	0.00	0.20	0.20			0.00		0.00	0.00	0.00	0.00
前側附壁ハンチ(垂直)	0.00	0.20	0.20			0.00		0.00	0.00	0.00	0.00
中央隔壁ハンチ(前側垂直)	1.60	0.20	0.20			-0.03		-0.13	-1.29	7.13	-9.22
中央隔壁ハンチ(後側垂直)	1.60	0.20	0.20	1/2		-0.03	4	-0.13	-1.29	4.27	-5.52
後側附壁ハンチ(垂直)	0.00	0.20	0.20	1/2		0.00	4	0.00		0.00	0.00
					2.59			-23.96	-241.95	5.70	-1380.20
total					12.66			216.02	2181.81	5.70	12439.99

## (3) 堤体の有効重量の算定

mあたりの有効重量の算定(堤体延長 15.0m)

堤亿	の有効自重		後し回り		前し回り			
		重量(kN/m)	モーメント(kNm/m)	作用位置(m)	重量(kN/m)	モーメント(kNm/m)	作用位置(m)	
	(1)軟着堤本体	383.96	2189.34	5.70	383.96	2187.83	5.70	
	(2)浮力	145.45	829.33	5.70	145.45	828.84	5.70	
		238.51	1360.00	5.70	238.51	1358.99	5.70	

## 2.3.1.3 **地震時慣性力・動水圧**

## (1) 地震慣性力の算定

地震慣性力の算定は以下のとおりである(設計震度 k=0.17)。

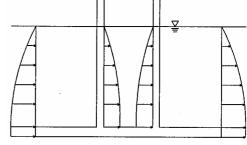
	W	W• k	у	<b>W</b> y
名称	(kN)	(kN)	(m)	(kNm)
底版	2403.10	408.53	0.30	122.56
前壁	1051.34	178.73	4.55	813.22
後壁	1059.31	180.08	4.55	819.36
前側側壁(バットレス)	110.25	18.74	1.77	33.11
中央側壁	341.28	58.02	4.55	263.99
後側側壁(バットレス)	111.72	18.99	1.77	33.55
前側控壁(バットレス)	110.25	18.74	1.77	33.11
中央隔壁	341.28	58.02	4.55	263.99
後側控壁(バットレス)	111.72	18.99	1.77	33.55
前壁ハンチ(前側下部)	5.95	1.01	0.67	0.67
前壁ハンチ(後側下部)	6.00	1.02	0.67	0.68
後壁ハンチ(前側下部)	6.00	1.02	0.67	0.68
後壁ハンチ(後側下部)	5.95	1.01	0.67	0.67
前側側壁ハンチ(下部)	3.41	0.58	0.67	0.39
前側側壁ハンチ(垂直)	3.17	0.54	2.45	1.32
前側側壁ハンチ(偶角部)	0.32	0.05	0.69	0.03
中央側壁ハンチ(下部)	2.50	0.42	0.67	0.28
中央側壁ハンチ(前側垂直)	7.39	1.26	4.65	5.86
中央側壁ハンチ(後側垂直)	7.39	1.26	4.65	5.86
中央側壁ハンチ(前側偶角部)	0.32	0.05	0.69	0.03
中央側壁ハンチ(後側偶角部)	0.32	0.05	0.69	0.03
後側側壁ハンチ(下部)	3.46	0.59	0.67	0.39
後側側壁ハンチ(垂直)	3.17	0.54	2.45	1.32
後側側壁ハンチ(偶角部)	0.32	0.05	0.69	0.03
前側控壁ハンチ(下部)	6.82	1.16	0.67	0.77
前側控壁ハンチ(垂直)	6.34	1.08	2.45	2.65
前側控壁ハンチ(偶角部)	0.64	0.11	0.69	0.08
中央隔壁ハンチ(下部)	4.99	0.85	0.67	0.57
中央隔壁ハンチ(前側垂直)	14.78	2.51	4.65	11.67
中央隔壁ハンチ(後側垂直)	14.78	2.51	4.65	11.67
中央隔壁ハンチ(前側偶角部)	0.64	0.11	0.69	0.08
中央隔壁ハンチ(後側偶角部)	0.64	0.11	0.69	0.08
後側控壁ハンチ(下部)	6.91	1.18	0.67	0.79
後側控壁ハンチ(垂直)	6.34	1.08	2.45	2.65
後側控壁ハンチ(偶角部)	0.64	0.11	0.69	0.08
	5759.43	979.10	2.52	2465.77

mあたりの地震慣性力:5759.43/15.0=65.27 kN/m

モーメント: 2465.77/15.0=164.38 kNm/m

#### (2) 動水圧の算定

## 1) 堤体に作用する動水圧の算定


堤体に動水圧は、港外側と港内側に作用するため、動水圧の合力の和は2倍となる(図-2.3.9参照)。

$$P_{dW} = \frac{7}{12} k \omega_o H^{1/2} y^{3/2} \times 2$$

$$= \frac{7}{12} \times 0.17 \times 10.1 \times 6.9^{1/2} \times 6.9^{3/2} \times 2$$

$$= 95.37 \text{ kN/m}$$

$$h_{dw} = \frac{2}{5} y$$
$$= \frac{2}{5} \times 6.9$$
$$= 2.76 m$$



ここに、 $P_{dw}$ :動水圧の合力(kN/m)

図 - 2.3.9 動水圧作用分布図

k:設計震度

 $\omega_0$ :海水の単位体積重量(kN/m³)

H:水深(m)

y:水面から動水圧を求める点までの深さ(m)

 $h_{dw}$ : 堤体底面から動水圧の合力の重心位置までの高さ (m)

### 2) 遊水室内に作用する動水圧

遊水室内に動水圧は、港外側と港内側に作用するため、動水圧の合力の和は2倍となる。

$$P_{dw} = \frac{7}{12} C k \omega_o H^{1/2} y^{3/2} \times 2$$

$$= \frac{7}{12} \times 0.317 \times 0.17 \times 10.1 \times 6.3^{1/2} \times 6.3^{3/2} \times 2$$

$$= 25.24 \text{ kN/m}$$

$$h_{dw} = \frac{2}{5} y + 0.60 (底版厚さ)$$

$$= \frac{2}{5} \times 6.3 + 0.6$$

$$= 3.12 m$$

ここに、C:補正係数

$$L / H ' < 1.5 \quad C = L / (1.5 H ')$$
  
 $L / H ' 1.5 \quad C = 1.0$ 

3.0/6.3 = 0.48 < 1.5  $C = 3.0/(1.5 \times 6.3) = 0.317$ 

L:水が占める空間の振動方向の長さ(m)

H ': 遊水室内の深さ(m)

### 2.3.2 考慮すべき荷重と設計合力

考慮すべき荷重と設計合力は以下のとおりである。

		水平波力	力最大時		鉛直波力	力最大時	地 震 時	
	押し	波時	引き	波時				
	水平力	鉛直力	水平力	鉛直力	水平力	鉛直力	水平力	鉛直力
	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)	(kN/m)
自 重	-	238.51	-	238.51	-	238.51	-	238.51
地震時慣性力	-	1	-	1	1	1	65.27	-
水平波力	212.66	1	128.59	1	133.71	1	1	-
鉛直波力	-	72.59	-	-76.94	1	182.71	1	-
動水圧	-	-	-	-	-	-	120.61	-
合計	212.66	311.10	128.59	161.57	133.71	421.22	185.88	238.51

### 2.3.3 安定検討

- (1) 堤体水平抵抗の検討
  - 1) 地盤強度の評価
    - a) 杭の許容付着力の算定

杭の許容付着力の算定は、杭の最大付着力に波圧作用時の場合 3.0 の値を、地震時の場合 2.5 の値を除した値とする。杭の最大付着力の算定は、根入れ長の中心における付着力 (平均付着力)を算出し、その付着力に杭の根入れ長を乗じた値とする。

杭根入れ中心位置における付着力の計算

$$\begin{split} \tau_f = &1.97 + 1.37Z & (Z = 0 & \text{at} & D.L \pm 0.00) \\ = &1.97 + 1.37 \left( 2.3 + 19.6/2 \right) \\ = &18.55 \, kN/m^2 \end{split}$$

ここに、杭の根入れ長 19.6m 海底地盤面 D.L.-2.3m

杭の最大付着力の計算

$$V_{\mathrm{max}} = 18.55 \times \left(0.465 + 0.492\right) \times 2 \times 19.6$$
  
=  $695.78 \, kN/$ 本  
ここに、日鋼杭幅  $0.465$ m  
日鋼杭高  $0.492$ m

mあたりの杭の最大付着力の計算

$$V_{
m max}=695.78 imes9/15$$
  $=417.47\,kN/{
m m}$  ここに、杭本数 18 本(片側 9 本) 堤体延長 15.0m

#### 杭の許容付着力の計算

・波圧作用時

$$V_a = V_{\text{max}} / 3.0$$
  
= 417.47 / 3.0  
= 139.16 kN/m

・地震時

$$V_a = V_{\text{max}} / 2.5$$
  
= 417.47 / 2.5  
= 166.99 kN/m

### b) 地盤反力係数の算定

### 増加係数の算定

地盤反力係数の算定に用いる地盤強度の増加係数は、 $\tau_f = 1.97 + 1.37Z$  を算出したときのデータにより算出する。そのときの直線は、図 - 2.3.10 に示すように地盤面を切片とする。

$$\tau_f = 2.02Z$$

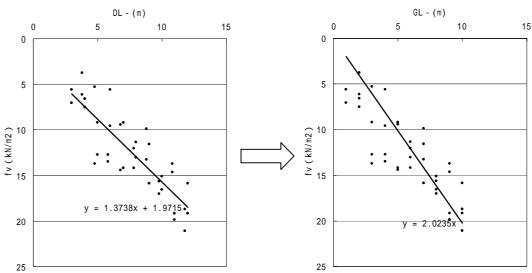



図 - 2.3.10 地盤反力係数 $k_s$ 算出時の地盤強度の評価

#### 地盤反力係数の算定

$$k_{s} = \alpha \sqrt{\frac{2\pi}{\varepsilon_{50} \cdot d}}$$

$$= 2.02 \sqrt{\frac{2\pi}{0.01 \times 0.465}}$$

$$= 74.25 \, kN/m^{3.5}$$

 $k_s = 74.0 \, kN/m^{3.5}$  と設定する。

ここに、 $\varepsilon_{50}$ : 一軸圧縮試験におけるせん断強度の 50% ひずみ量 (0.01)

d:杭の直径(0.465m)

 $\alpha$  :  $\tau_f = \alpha Z O \alpha$  深度方向の勾配 (2.02 kN/m³)

#### (2) 堤体水平抵抗の検討

「くし型」の場合、水平合力はすべて杭で受け持つため、堤体水平抵抗に対する検討については、杭の応力照査を行う。ここでの検討は、水平合力が最大となる押し波時のみを検討し、引き波時と鉛直波力最大時は省略する。

1) 杭頭固定度 $R_{fix}$ の設定

杭頭固定度  $R_{fix}$  は、現地実証試験の結果より  $R_{fix}$  = 0.6 ~ 0 にばらついているため、杭頭部の応力照査を行うときは、 $R_{fix}$  = 0.6 と設定し、地中部の応力照査を行うときは、 $R_{fix}$  = 0 と設定する。

杭頭部を検討するときの杭頭固定度 $R_{fix}=0.6$ 地中部を検討するときの杭頭固定度 $R_{fix}=0$ 

2) 杭1本あたりの水平荷重の算定

杭1本あたりの水平荷重を算定するときの荷重分担係数は、現地実証試験結果より設定している。

a) 杭頭部を検討するとき

$$h_i = \alpha_T H / N_i$$
  
= 1.25×212.66×15.0/18  
= 221.52 kN/ $\clubsuit$ 

ここに、杭頭部を検討するときの荷重分担係数( $\alpha_T$  = 1.25) 全杭本数( $N_i$  = 18 本) 水平合力(H = 212.66 kN/m×15.0 m)

b) 地中部を検討するとき

$$h_i = \beta_T H / N_i$$
  
= 0.85×212.66×15.0/18  
= 150.63 kN/本

ここに、杭頭部を検討するときの荷重分担係数 ( $\beta_T$  = 0.85) 全杭本数 ( $N_i$  = 18 本) 水平合力 (H = 212.66 kN/mimes15.0 m)

3) 曲げモーメントの算定

曲げモーメントの算定は、「港研方式」により求める。

a) 計算条件

 $T(h_i) = 221.52 \, kN/$ 本: 杭頭部、 $T(h_i) = 150.63 \, kN/$ 本: 地中部

- b) 杭頭モーメントの算定
  - S型地盤、頭部固定杭として算出する。
  - ・地表面モーメント

$$\log M_{\max - t} = -0.05787 + \frac{1}{7}\log EI - \frac{2}{7}\log Bk_s + \frac{8}{7}\log T$$

$$= -0.05787 + \frac{1}{7}\log(2.267 \times 10^5) - \frac{2}{7}\log(34.41) + \frac{8}{7}\log(221.52)$$

$$M_{\text{max}-t} = 883.58kNm$$

・設計杭頭モーメント

$$M_k = R_{fix} M_{\text{max}-t}$$
  
= 0.6×883.58  
= 530.15kNm

- c) 地中部最大モーメントの算定
  - S型地盤、頭部自由杭として算出する。
  - ・地中部モーメント

$$\log M_{\text{max}} = -0.05825 + \frac{1}{7}\log EI - \frac{2}{7}\log Bk_s + \frac{8}{7}\log T$$

$$= -0.05787 + \frac{1}{7}\log(2.267 \times 10^5) - \frac{2}{7}\log(34.41) + \frac{8}{7}\log(150.63)$$

$$M_{\text{max}} = 571.25 kNm$$

- 4) 杭の応力照査
  - a) 杭頭部の検討

杭頭部に生じる応力度の算定

$$\sigma_s = \frac{M_{\text{max}-t}}{Z} + \frac{N}{A'}$$

$$= \frac{530.15 \times 10^6}{4.444 \times 10^6} + \frac{231.93 \times 10^3}{240 \times 10^2}$$

$$= 128.96 N/mm^2$$

ここに、M:曲げモーメント(Nm)

Z:杭の有効断面係数(4.444×10⁶mm³)

N:杭の軸力(139.16×10³×15.0/9=231.93×10³N)

A': 杭の有効断面積 (240×10²mm²)

杭の応力照査

杭の応力照査は、杭に生じる応力度が許容応力度以下であることを確認する。

$$\sigma_{s} = 128.96\,N/mm^{2} \quad \sigma_{sa} = 185\,N/mm^{2} \quad \text{OK}$$
 
$$\text{ZZIC,} \quad \sigma_{sa} : 185\,N/mm^{2} \quad \text{(SHK490)}$$

#### b) 地中部の検討

地中部に生じる応力度の算定

$$\sigma_s = \frac{M_{\text{max}}}{Z} + \frac{N}{A'}$$

$$= \frac{571.25 \times 10^6}{4.611 \times 10^6} + \frac{231.93 \times 10^3}{250 \times 10^2}$$

$$= 133.17 \text{ N/mm}^2$$

ここに、M:曲げモーメント( $\mathbb{N}$ m)

Z:杭の有効断面係数(4.611×10⁶mm³)

N:杭の軸力(231.93×10³N)

A': 杭の有効断面積 (250×10²mm²)

杭の応力照査

杭の応力照査は、杭に生じる応力度が許容応力度以下であることを確認する。

$$\sigma_s$$
=133.17  $N/mm^2$   $\sigma_{sa}=185\,N/mm^2$  OK ここに、 $\sigma_{sa}:185\,N/mm^2$  (SHK490)

#### (3) 堤体鉛直支持力の検討

堤体鉛直支持力に対する検討は、水平合力が最大となる押し波時のみ記載し、他ケースは省略する。

1) 杭頭曲げモーメント反力の算定

曲げモーメントの算定は、「港研方式」により求める。

a) 計算条件

$$EI=2.304 \times 10^5 \, kNm^2$$
  
ここに、鋼材のヤング係数( $E=2.0 \times 10^8 \, kN/m^2$ )  
杭の断面二次モーメント( $I=1.152 \times 10^{-3} \, m^4$ :腐食考慮)

$$Bk_s = 34.41 kN/m^{2.5}$$
  
ここに、杭幅( $B = 0.465m$ )  
地盤反力係数( $k_s = 74.0 kN/m^{3.5}$ )

杭1本あたりの荷重の算定

$$h_i = \gamma_T H / N_i$$
  
= 1.00×212.66×15.0/18  
= 177.22 kN/ $\clubsuit$ 

ここに、杭頭部を検討するときの荷重分担係数 (  $\gamma_T$  = 1.00 )

全杭本数 ( $N_i$  = 18 本)

水平合力 ( $H = 212.66 \text{ kN/m} \times 15.0 \text{ m}$ )

### b) 杭頭モーメントの算定

S型地盤、頭部固定杭として算出する。

・地表面モーメント

$$\log M_{\max-t} = -0.05787 + \frac{1}{7}\log EI - \frac{2}{7}\log Bk_s + \frac{8}{7}\log T$$

$$= -0.05787 + \frac{1}{7}\log(2.304 \times 10^5) - \frac{2}{7}\log(34.41) + \frac{8}{7}\log(177.22)$$

$$M_{\text{max}-t} = 690.03kNm$$

・設計杭頭モーメント(杭1本あたり)

$$M_k = R_{fix} M_{\text{max}-t}$$
  
= 0.6×690.03  
= 414.02kNm

### mあたりの杭とモーメント

$$M_k = 414.02 \times 18/15.0$$
  
=  $496.82 \, kNm/m$ 

- 2) 押し波時の荷重とそのモーメントのまとめ
  - 2.3.1 設計荷重の結果より押し波時の荷重とそのモーメントは以下のとおりとなる。

	水平力	水平力に起因する	鉛直力	鉛直力に起因する
	(kN/m)	モーメント(kNm/m)	(kN/m)	モーメント(kNm/m)
自 重	1	-	238.51	1360.00
水平波力	212.66	975.07	-	-
鉛直波力	-	-	72.59	667.24
杭頭モーメント	1	496.82	-	-
合計	212.66	1471.89	311.10	2027.24

3) 杭の付着力を考慮しないときの偏心量 $e_{\scriptscriptstyle 0}$ の算定

$$x = \frac{2027.24 - 1471.89}{311.10}$$
$$= 1.785m$$
$$e_0 = \frac{B}{2} - x$$

$$= \frac{11.4}{2} - 1.785$$
$$= 3.915m$$

#### 4) 杭の付着力の算定

堤体鉛直支持力に対する検討の安定性が満足するように、杭の付着力を算出する。仮定し た偏心量 e により算出された杭の付着力を考慮して堤体鉛直支持力に対する検討の安定性が 満足するように電子計算機より繰り返し計算を行わせる。

その結果、偏心量e = 0.266となった。そのときの基礎の支持力fの算定を行う。

- a) 基礎の支持力 qf の算定に必要な条件の算定を以下に示す。
  - ・荷重の傾斜角度 $\theta$ の算定

$$\cos 2\theta = H / C_{uo}$$

$$= 0$$

$$\theta = \sin^{-1} \sqrt{\frac{1 - 0}{2}}$$

=0.785

・偏心による補正値 $F_{
ho c}$ の算定

$$F_{ec} = 1 - 2e/B$$

$$= 1 - 2 \times 0.266/11.4$$

$$= 0.953$$

・傾斜荷重による支持力の減少を考慮した支持力係数 ic の算定

$$ic = 0.5 + (2\theta + \sin 2\theta)/(2 + \pi)$$

$$= 0.5 + (2 \times 0.785 + \sin (2 \times 0.785))/(2 + \pi)$$

$$= 1.000$$

・深度方向の強度増加を考慮した支持力の係数 $F_{R}$ の算定 深度方向の強度増加を考慮した支持力の係数 $F_R$ は図 - 2.3.11 により求める。

$$\rho B/C_{uo} = 1.370 \times 11.4/5.121 = 3.05$$
  $F_R = 1.438$ 

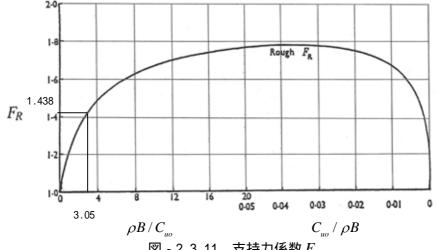



図 - 2.3.11 支持力係数 $F_R$ 

・鉛直荷重に対して得られる地盤強度 (平均強度)  $C_{\!_{u1}}$ の算定

$$C_{u1} = F_R \left\{ 1 + \frac{\rho B / C_{uo}}{4(2+\pi)} \right\} C_{uo}$$
$$= 1.438 \times \left\{ 1 + \frac{1.370 \times 11.4 / 5.121}{4 \times (2+\pi)} \right\} \times 5.121$$
$$= 8.402$$

・深さ方向のCの増加の補正値Rの算定

$$R = \frac{C_{u1}}{C_{uo}}$$
$$= \frac{8.402}{5.121}$$
$$= 1.641$$

・傾斜による補正値 icl の算定

$$icl = ic \left\{ 1/R + (1 - 1/R) 4\theta / \pi \right\}$$
  
= 1.000×\left\{1/1.641 + \left(1 - 1/1.641\right) \times 4 \times 0.785 / \pi \right\}  
= 1.000

b) 基礎の支持力 qf の算定

$$qf = C_{uo}R(2+\pi)icl \cdot F_{ec}$$
  
= 5.121×1.641×(2+\pi)×1.000×0.953  
= 41.18kN/m²

c) 杭の付着力の算定

上向きの荷重を正の値で示す。

$$\begin{split} V_1 &= \frac{W \times (e_0 - e) - L_2 \times (qf / 1.51 \times B - W)}{L_1 + L_2} \\ &= \frac{311.09 \times (3.915 - 0.266) - 4.20 \times (41.18 / 1.51 \times 11.4 - 311.09)}{4.20 + 4.20} \\ &= 135.22 \, kN / m \\ V_2 &= \frac{-W \times (e_0 - e) - L_1 \times (qf / 1.51 \times B - W)}{L_1 + L_2} \\ &= \frac{-311.09 \times (3.915 - 0.266) - 4.20 \times (41.18 / 1.51 \times 11.4 - 311.09)}{4.20 + 4.20} \\ &= -135.04 \, kN / m \end{split}$$

5) 鉛直合力Vの算定

$$V = W + V_1 + V_2$$
= 311.09 - 135.22 + 135.04  
= 310.91  

$$V / B = 310.91/11.4$$
= 27.27 kN/m²

6) 堤体鉛直支持力の検討

堤体鉛直支持力に対する検討は、  $F\left(V/B\right)/q_f$  1.0 であることを確かめることにより行うものとする

$$F(V/B)/q_f = 1.5 \times 27.27/41.18$$
  
= 0.99 OK

7) 底版反力の算定

$$e = 0.266 < B/6 = 11.4/6 = 1.900$$
となるため、底版反力は台形分布となる。

$$P_{1} = \left(1 + \frac{6e}{B}\right) \times \frac{V}{B}$$

$$= \left(1 + \frac{6 \times 0.266}{11.4}\right) \times \frac{310.91}{11.4}$$

$$= 31.10 \, kN/m^{2}$$

$$P_{2} = \left(1 - \frac{6e}{B}\right) \times \frac{V}{B}$$

$$= \left(1 - \frac{6 \times 0.266}{11.4}\right) \times \frac{310.91}{11.4}$$

$$= 23.45 \, kN/m^{2}$$

#### (4) 波の繰り返しによる影響の検討

波の繰り返しによる影響の検討は、押し波時のみ検討する。

1) 波の繰り返しによる影響の検討に用いる設計波の設定

熊本港における波の繰り返しによる影響の検討に用いる設計波は $H_{1/10}$ とする。なお、周期は最大荷重に対する検討と同じ 5.5sec とする。

$$H_{1/10} = 1.27 H_{1/3}$$
$$= 1.27 \times 2.7$$
$$= 3.4 m$$

#### 2) 堤体水平抵抗の検討

a) 外力の計算

外力の計算については、計算手法は、最大荷重時の検討と同様であるため、結果のみ示 す。

	水平力	鉛直力
	(kN/m)	(kN/m)
自 重	1	238.51
水平波力	159.23	-
鉛直波力	-	54.84
合計	159.23	293.35

### b) $\ell_{m1}$ の算定

 $\ell_{\rm ml}$ の算定は、最大荷重に対して算出し、繰り返しによる影響を考慮しない値を用いる。 計算条件

•  $EI = 2.304 \times 10^5 \, kNm^2$ 

・
$$Bk_s = 34.41 kN/m^{2.5}$$
  
ここに、杭幅( $B = 0.465 m$ )  
地盤反力係数( $k_s = 74.0 kN/m^{3.5}$ )

・杭1本あたりの荷重の算定

$$h_i = 212.66 \times 15.0/18 = 177.22 \, kN/$$
本  
ここに、全杭本数( $N_i = 18$  本)  
水平合力( $H = 212.66 \, kN/m \times 15.0 \, m$ )

ℓ_{m1}の算定

S型地盤、頭部固定杭として算出する。

$$\log \ell_{m1} = 0.54689 + \frac{1}{7} \log EI - \frac{2}{7} \log Bk_s + \frac{1}{7} \log T$$

$$= -0.54689 + \frac{1}{7} \log \left(2.304 \times 10^5\right) - \frac{2}{7} \log \left(34.41\right) + \frac{1}{7} \log \left(177.22\right)$$

$$\ell_{m1} = 16.18m$$

#### c) 地盤強度の評価

杭の許容付着力の算定

杭の許容付着力の算定は、杭の最大付着力に波圧作用時の場合 3.0 の値を、地震時の場合 2.5 の値を除した値とする。杭の最大付着力の算定は、根入れ長の中心における付着力 (平均付着力)を算出し、図 - 2.3.12 に示す付着力の作用範囲を乗じた値とする。

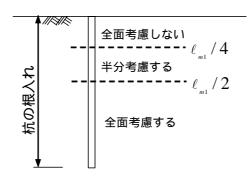



図 - 2.3.12 杭の付着力の作用範囲

#### 杭の最大付着力の計算

 $\ell_{\text{m1}}/4 = 16.18/4 = 4.04m$  $\ell_{\text{m1}}/2 = 16.18/2 = 8.09m$ 

杭の根入れ長 19.6m に対して付着力を考慮する範囲を以下のように設定する。

- ・全面考慮しない 4.0m
- ・半分考慮する 4.0m

付着力を半分考慮する範囲の付着力の算定

$$au_f = 1.97 + 1.37Z$$
 (  $Z = 0$  at  $D.L \pm 0.00$  )  
=  $1.97 + 1.37 (2.3 + 4.0 + 4.0/2)$   
=  $13.34 \, kN/m^2$ 

・全面顧慮する 11.6m

$$au_f = 1.97 + 1.37Z$$
 (  $Z = 0$  at  $D.L \pm 0.00$  )  
=  $1.97 + 1.37 (2.3 + 8.0 + 11.6/2)$   
=  $24.02 \, kN/m^2$ 

・杭の最大付着力

$$V_{\rm max}=13.34 \times \left(0.465+0.492\right) \times 2/2 \times 4.0 + 24.02 \times \left(0.465+0.492\right) \times 2 \times 11.6$$
 = 584.37  $kN/$ 本 ここに、日鍋杭幅 0.465m

H鋼杭高 0.492m

mあたりの杭の最大付着力の計算

$$V_{\rm max}=584.37 imes9/15$$
  $=350.62\,kN/{\rm m}$  ここに、杭本数 18 本(片側 9 本) 堤体延長 15.0m

#### 杭の許容付着力の計算

・波圧作用時

$$V_a = V_{\text{max}} / 3.0$$
  
= 350.62/3.0  
= 116.87 kN/m

杭1本あたりの曲げモーメント 116.87×15.0/9=194.78kN/本

### b) 地盤反力係数の算定

地盤反力係数

$$k_s = 74.0 \, kN/m^{3.5}$$

地盤反力係数の低下

地盤反力係数については、図 - 2.3.13 に示す範囲で低下させる。 海底面から  $\ell_{\rm ml}$  /4までの範囲については、 $k_s=0.0\,kN/m^{3.5}$   $\ell_{\rm ml}$  /4~ $\ell_{\rm ml}$  /2までの範囲については、 $p=(-592.0+148.0\,x)\,y^{0.5}$  (地盤面の切片 74.0×4.0=592.0、勾配 592.0/4.0=148.0)  $\ell_{\rm ml}$  /2よりも深い範囲については、 $k_s=74.0\,kN/m^{3.5}$ 

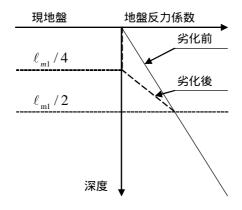



図 - 2.3.13 地盤反力係数の低下

### c) 曲げモーメントの算定

曲げモーメントの算定は、地盤反力係数の低下を考慮できるプログラムにより算出する。 杭頭部の曲げモーメント

$$M_{\text{max}-t} = 877.30 \text{kNm}$$
  
 $M_k = R_{fix} M_{\text{max}-t}$   
 $= 0.6 \times 877.30$   
 $= 526.38 \text{kNm}$ 

地中部の曲げモーメント  $M_{\text{max}} = 724.60 \text{kNm}$ 

#### d) 杭の応力照査

杭頭部の検討

・杭頭部に生じる応力度の算定

$$\sigma_s = \frac{M_{\text{max}-t}}{Z} + \frac{N}{A'}$$

$$= \frac{526.38 \times 10^6}{4.444 \times 10^6} + \frac{194.78 \times 10^3}{240 \times 10^2}$$

$$= 126.57 \text{ N/mm}^2$$

ここに、M:曲げモーメント(Nm)

Z:杭の有効断面係数(4.444×10⁶mm³)

N : 杭の軸力(194.78imes10 3 N)

A': 杭の有効断面積 (240×10²mm²)

・杭の応力照査

杭の応力照査は、杭に生じる応力度が許容応力度以下であることを確認する。

$$\sigma_s = 126.57 \, N/mm^2$$
  $\sigma_{sa} = 185 \, N/mm^2$  OK  $= 185 \, N/mm^2$  (SHK490)

地中部の検討

・地中部に生じる応力度の算定

$$\sigma_s = \frac{M_{\text{max}}}{Z} + \frac{N}{A'}$$

$$= \frac{724.60 \times 10^6}{4.611 \times 10^6} + \frac{194.78 \times 10^3}{250 \times 10^2}$$

$$= 164.94 \, N/mm^2$$

ここに、M:曲げモーメント(Nm)

Z: 杭の有効断面係数 (4.611 $\times$ 10 6 mm 3 )

N:杭の軸力(194.78×10³N)

A':杭の有効断面積(250×10²mm²)

・杭の応力照査

杭の応力照査は、杭に生じる応力度が許容応力度以下であることを確認する。

$$\sigma_s = 164.94 \, N/mm^2$$
  $\sigma_{sa} = 185 \, N/mm^2$  OK  $= 185 \, N/mm^2$  (SHK490)

3) 堤体鉛直支持力の検討

検討手法は杭の許容付着力の値以外、最大荷重の検討時と同様であるため省略する。

#### 2.4 従来設計法との比較

従来設計法と新設計法との比較結果を表 - 2.4.1 に示す。新設計法では、従来設計に対して杭の根入れ長は長くなるが、杭断面と堤体幅は小さくできるため、総合的には約4割程度のコスト縮減が可能となった。

従来設計法 新設計法 25.60 10.85 .0.45. 3.00 D.40. 3.75 Q 45 3.00 Q 40 3.80 +7,0m 港外創 (完成時+6,10m) \$0.67 \$0.416 港外側 (完成時+6.10m) **▽ H. W. L** +4.5m ₫0.67 711 +00a **▽ L.W.L** ±0.0m 標準断面図 -12.9n 堤体諸元  $L \times B \times H$  $L \times B \times H$ (m)  $7.2 \times 25.6 \times 9.3$  $15.0{\times}11.4{\times}8.5$ 極厚H鋼500×500S H形鋼杭 杭  $532\times485\times35\times40$  $492\!\times\!465\!\times\!15\!\times\!12$ 杭長 L = 11.5m 杭長 L = 20.5m 堤 体 重 量 6330.56 kN 5759.45 kN 安定計算結果 (最大荷重作用時) 安定計算結果(最大荷重作用時) 鉛直波力 鉛直波力 項 目 押し波時 引き波時 地震時 押し波時 引き波時 地震時 最大時 最大時 滑 動 1.509>1.5 2.275>1.5 2.223>1.5 転 倒 3.654>1.2 4.679>1.2 8.117>1.2 3.069>1.1 支持力 1.706>1.5 2.803>1.5 1.500>1.5 1.510>1.5 | 1.670>1.5 | 1.510>1.5 | 1.510>1.5 杭に作用する 港外側 135<139.2 0<139.2 138<139.2 54<166.9 付着力(kN/m) 港内側 44<139.2 54<166.9 135<139.2 0<139.2 117<185 119<185 129<185 77<185 80<185 76<277.5 杭頭 176<185 235<277.5 応力度(N/mm²) 地中 79<185 82<185 78<277.5 133<185 安定計算結果(繰り返し荷重作用時) 安定計算結果(繰り返し荷重作用時) 鉛直波力 鉛直波力 項 目 押し波時 引き波時 地震時 押し波時 引き波時 地震時 最大時 最大時 支 持 力 1.510>1.5 杭に作用する 港外側 45<116.1 _ 付着力(kN/m) 港内側 45<116.1 杭頭 127<185 応力度(N/mm²) 地中 165<185 -コスト 1.00 0.56

表 - 2.4.1 従来設計法との比較結果

## 3. 細部設計実施のための参考事例計算

#### 3.1 設計条件の整理

### 3.1.1 一般条件

(1) 防波堤の諸元

1) 防波堤の構造形式:逆 型軟着堤

2) 設計水深 : - 2.3m 3) 防波堤の天端高 : + 6.1m

4) 平面形状 :幅 11.4m×延長 15.0m

5) 堤体重量 : 5759.45 kN

(2) 自然条件

1) 設計潮位 : H.W.L+4.50m

 $L.W.L \pm 0.00m$  M.S.L + 2.45m $D.L \pm 0.00m$ 

2) 設計震度 : k=0.17

### 3.1.2 荷重条件

(1) 永久荷重 自重、静水圧

(2) 変動荷重

波力

(3) 偶発荷重

地震慣性力、動水圧

## 3.1.3 施工条件

堤体のロット割りについては以下のとおりとする。

1	ロット	2ロット	3ロット	合計
	2.50m	3.00m	3.00m	8.50m

#### 3.1.4 使用材料

(1)  $\exists \lambda \forall J - F$  :  $\sigma_{ck} = 24 N / mm^2$ 

 $E_c = 25 \, kN/mm^2$ 

(2) 鉄筋コンクリート用棒鋼 : SD345

 $f_{yk} = 345 N/mm^2$  $E_s = 200 kN/mm^2$ 

(3) 型鋼、プレート類用鋼材 : SS400

1) 許容曲げ応力度 :  $\sigma_{sa} = 140 \, N/mm^2$  2) 許容引張応力度 :  $\sigma_{ta} = 140 \, N/mm^2$  3) 許容せん断応力度 :  $\tau_{sa} = 80 \, N/mm^2$ 

(4) 単位体積重量

### 3.1.5 部分安全係数

部分安全係数については、技術基準(平成 11 年制定)第3編 第3章および本マニュアルの 3.3.3 に準じる。

### 3.1.6 構造寸法図

構造寸法図を図 - 3.1.1 に示す。

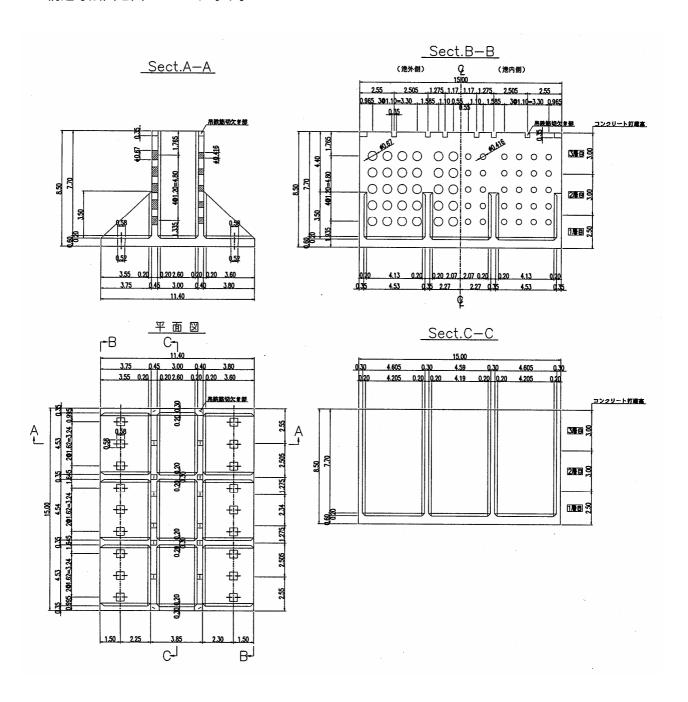



図 - 3.1.1 構造寸法図

#### 3.2 設計波の整理

#### 3.2.1 終局限界状態に対する設計波浪の整理

終局限界状態に対する設計波浪は、基本設計に用いた設計波高 Hmax および周期を使用する(表 - 3.2.1 参照)。

					•
	;	沖 波	ž	設意	汁 波
再現期間	波向	Но	То	Hmax	H _{1/3}
		(m)	(s)	(m)	(m)
50年	WSW	2.7	5.5	4.5	2.7
10年	NW	2.3	5.0	3.5	2.0

表 - 3.2.1 設計波(終局限界)

### 3.2.2 使用限界状態に対する設計波浪の算出

使用限界状態の検討に用いる設計波は、設計対象区域の波浪観測データから求める。設計対象区域の波浪観測地点において求められた、波高・周期(X年間観測)の度数分布を用いる。耐用期間中に出現する波高別頻度を計算するには、度数分布表のデータにレーリー分布の理論を適用し、それを耐用期間中に出現すると考えられる波浪データに置き換えることにより求める。使用限界状態の検討では波高ランクを 0.1m ピッチとする。

#### (1) 有義波高 - 有義波周期度数分布の作成

設計対象区域の波浪観測地点でX年間の間、2時間に1回20分の測定を行い、測定毎に一つ得られた有義波高と周期を度数分布表として整理し、計算する。表 - 3.2.2 に8年間の観測データを整理した有義波高 - 有義波周期度数分布を示す。この波浪観測データは年間を通して連続した波浪データを取得していない。そこで、観測期間に出現する個別波の頻度分布を推定するために(2)移行の手順で計算する。

周期(sec)	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	出現度数	出現率	累積度数	累積率
波高(m) 🔪	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	<u> </u>	(%)	24 12.22	(%)
0.00 ~ 0.25	0	4562	12979	1694	135	34	28			19432	62.85	30917	100.00
0.25 ~ 0.50	0	404	6503	1135	63	24	5	2		8136	26.32	11485	37.15
0.50 ~ 0.75	0	6	1333	1002	10	2				2353	7.61	3349	10.83
0.75 ~ 1.00	0	0	57	606	14	2	1			680	2.20	996	3.22
1.00 ~ 1.25	0	0	5	184	25	1				215	0.70	316	1.02
1.25 ~ 1.50	0	0		40	19	1				60	0.19	101	0.33
1.50 ~ 1.75	0	0		8	13	1				22	0.07	41	0.13
1.75 ~ 2.00	0	0	1	5	2		2			10	0.03	19	0.06
2.00 ~ 2.25	0	0			3		1			4	0.01	9	0.03
2.25 ~ 2.50	0	0			4					4	0.01	5	0.02
2.50 ~ 2.75	0	0			1					1	0.00	1	0.00
2.75 ~ 3.00	0	0								0	0.00	0	0.00
出現度数	0	4972	20878	4674	289	65	37	2	0	30917			
出現率(%)	0.00	16.08	67.53	15.12	0.93	0.21	0.12	0.01	0.00				·
累積度数	0.00	4972	25850	30524	30813	30878	30915	30917	30917				·
累積率(%)	0.00	16.08	83.61	98.73	99.66	99.87	99.99	100.00	100.00				

表 - 3.2.2 有義波高 - 有義波周期度数分布

### (2) レーリー分布の確立密度

個々の波浪データにレーリー分布の確立密度を乗じることにより、観測中の波浪の出現確立 密度を求める。確立密度は(式 - 3.1)により求める。計算結果を表 - 3.2.3 に示す。

 $\beta = -\exp(-\pi/4(H_1/H)^2) + \exp(-\pi/4(H_2/H)^2)$  (式 - 3.1)

ここに、 $H_{\scriptscriptstyle 1}$ : レーリー分布を用いて置き換えられる波高ランクの上限

 $H_\gamma$ :レーリー分布を用いて置き換えられる波高ランクの下限

H: もとの波高ランクにおける平均波高(波高ランクの中間値)/1.6

表 - 3.2.3 レーリー分布の確立密度

もとの波高ランク(m)	0.00	0.25	0.50	0.75	1.00	1.25	1.50	1.75		2.25		7 25	7.50	7.75
CCV//XEIJJJJ/(III)	~	0.25	~	0.75	~	~	~	1.75	2.00	~		7.25	7.50	7.75
置換る波高ランク(m)	0.25	0.50	0.75	1.00	1.25	1.50	1.75	2.00	2.25	2.50		7.50	7.75	8.00
0.0 ~ 1.0	1.00000	1.00000	0.99418	0.92764	0.79580	0.65474	0.53300	0.43555	0.35934	0.29984		0.03629	0.03399	0.03190
1.0 ~ 2.0	0.00000	0.00000	0.00582	0.07233	0.20246	0.33105	0.41944	0.46294	0.47219	0.45984	• • •	0.10116	0.09520	0.08973
2.0 ~ 2.1	0.00000	0.00000	0.00000	0.00002	0.00083	0.00502	0.01275	0.02122	0.02811	0.03267	•	0.01297	0.01226	0.01160
2.1 ~ 2.2	0.00000	0.00000	0.00000	0.00001	0.00045	0.00337	0.00972	0.01750	0.02446	0.02951	• • •	0.01340	0.01267	0.01200
2.2 ~ 2.3	0.00000	0.00000	0.00000	0.00000	0.00023	0.00221	0.00728	0.01425	0.02104	0.02640		0.01379	0.01306	0.01238
2.3 ~ 2.4	0.00000	0.00000	0.00000	0.00000	0.00012	0.00142	0.00536	0.01144	0.01791	0.02340	• • •	0.01416	0.01343	0.01274
2.4 ~ 2.5	0.00000	0.00000	0.00000	0.00000	0.00006	0.00089	0.00388	0.00907	0.01508	0.02057	• • •	0.01451	0.01377	0.01308
2.5 ~ 2.6	0.00000	0.00000	0.00000	0.00000	0.00003	0.00054	0.00276	0.00709	0.01257	0.01791	• • •	0.01482	0.01408	0.01339
2.6 ~ 2.7	0.00000	0.00000	0.00000	0.00000	0.00001	0.00033	0.00193	0.00548	0.01036	0.01547	• • •	0.01511	0.01438	0.01368
2.7 ~ 2.8	0.00000	0.00000	0.00000	0.00000	0.00001	0.00019	0.00133	0.00417	0.00846	0.01324		0.01537	0.01464	0.01395
2.8 ~ 2.9	0.00000	0.00000	0.00000	0.00000	0.00000	0.00011	0.00090	0.00314	0.00683	0.01124		0.01560	0.01488	0.01420
2.9 ~ 3.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00006	0.00060	0.00233	0.00546	0.00946		0.01581	0.01510	0.01443
3.0 ~ 4.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00007	0.00105	0.00571	0.01738	0.03710		0.16347	0.15750	0.15165
4.0 ~ 5.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00011	0.00079	0.00320		0.15665	0.15380	0.15065
5.0 ~ 6.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00001	0.00013		0.13260	0.13329	0.13337
6.0 ~ 7.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.10084	0.10427	0.10705
7.0 ~ 8.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	•	0.06956	0.07434	0.07864
8.0 ~ 9.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.04380	0.04860	0.05320
9.0 ~ 10.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.02527	0.02925	0.03328
10.0 ~ 11.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.01339	0.01626	0.01930
11.0 ~ 12.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00654	0.00836	0.01040
12.0 ~ 13.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00294	0.00398	0.00521
13.0 ~ 14.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00122	0.00176	0.00243
14.0 ~ 15.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00047	0.00072	0.00106
15.0 ~ 16.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00017	0.00027	0.00043
16.0 ~ 17.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00005	0.00010	0.00016
17.0 ~ 18.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00002	0.00003	0.00006
18.0 ~ 19.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00001	0.00002
19.0 ~ 20.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000		0.00000	0.00000	0.00001
合 計	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000	1.00000		1.00000	1.00000	1.00000

#### (3) 個別波の出現密度

2時間1回の観測毎により得られた有義波高と有義波周期を代表波とし、その波が2時間の間継続して出現するものと仮定する。2時間に出現した個別波の数は表 - 3.2.4 に示す有義波周期の0~2.5secといった周期ランク毎の平均波周期を用い(式 - 3.2)で求める。

2 時間の間に出現した個別波の数N = 2×3600 秒/平均波周期 (式 - 3.2)

表 - 3.2 の周期ランクは有義波周期であるため、(式 - 3.3) により有義波周期を 1.2 で除した値とする。

$$T_{\text{max}} = T_{1/10} = T_{1/3} = (1.1 - 1.3)T$$
 ( \(\pi \cdot 3.3\))

2 時間毎の波浪の出現頻度確立密度に、(式-3.2)で求めた個別波の数Nを乗じることにより、2時間中の波高の頻度分布が得られる。

			10	. 0.2.		131/X V2	шиц	ix.			
周期(sec)	0.00	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	出現度数	出現率
波高(m)	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50		(%)
0.0 ~ 1.0	0.00000	4971.96486	20864.53366	4566.38035	263.59435	63.82717	35.15809	2.00000	0.00000	30767.458476	99.52
1.0 ~ 2.0	0.00000	0.03514	13.35458	105.82668	22.49258	1.10926	1.47041	0.00000	0.00000	144.288655	0.47
2.0 ~ 2.1	0.00000	0.00000	0.02641	0.57307	0.57483	0.01864	0.07056	0.00000	0.00000	1.263523	0.00
2.1 ~ 2.2	0.00000	0.00000	0.02011	0.38654	0.46069	0.01355	0.05947	0.00000	0.00000	0.940366	0.00
2.2 ~ 2.3	0.00000	0.00000	0.01554	0.26223	0.36972	0.00973	0.04954	0.00000	0.00000	0.706756	0.00
2.3 ~ 2.4	0.00000	0.00000	0.01207	0.17885	0.29716	0.00690	0.04079	0.00000	0.00000	0.535767	0.00
2.4 ~ 2.5	0.00000	0.00000	0.00936	0.12256	0.23918	0.00482	0.03322	0.00000	0.00000	0.409135	0.00
2.5 ~ 2.6	0.00000	0.00000	0.00723	0.08429	0.19273	0.00333	0.02675	0.00000	0.00000	0.314332	0.00
2.6 ~ 2.7	0.00000	0.00000	0.00554	0.05811	0.15543	0.00227	0.02131	0.00000	0.00000	0.242665	0.00
2.7 ~ 2.8	0.00000	0.00000	0.00420	0.04011	0.12538	0.00152	0.01680	0.00000	0.00000	0.188027	0.00
2.8 ~ 2.9	0.00000	0.00000	0.00315	0.02768	0.10112	0.00101	0.01311	0.00000	0.00000	0.146076	0.00
2.9 ~ 3.0	0.00000	0.00000	0.00234	0.01907	0.08147	0.00066	0.01013	0.00000	0.00000	0.113679	0.00
3.0 ~ 4.0	0.00000	0.00000	0.00571	0.03986	0.28993	0.00112	0.02880	0.00000	0.00000	0.365416	0.00
4.0 ~ 5.0	0.00000	0.00000	0.00011	0.00057	0.02416	0.00001	0.00100	0.00000	0.00000	0.025840	0.00
5.0 ~ 6.0	0.00000	0.00000	0.00000	0.00000	0.00123	0.00000	0.00002	0.00000	0.00000	0.001245	0.00
6.0 ~ 7.0	0.00000	0.00000	0.00000	0.00000	0.00004	0.00000	0.00000	0.00000	0.00000	0.000038	0.00
7.0 ~ 8.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.000001	0.00
8.0 ~ 9.0	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.00000	0.000000	0.00
出現度数	0.00000	4972.00000	20878.00000	4674.00000	289.00000	65.00000	37.00000	2.00000	0.00000	30917.00000	
出現率(%)	0.00	16.08	67.53	15.12	0.93	0.21	0.12	0.01	0.00		
累積度数	0	4972	25850	30524	30813	30878	30915	30917	30917		
累積率(%)	0.00	16.08	83.61	98.73	99.66	99.87	99.99	100.00	100.00		

表 - 3.2.4 個別波の出現密度

平均周期への変換; $\bar{T} = T_{1/3}/1.2$ 

#### (4) 観測期間中の個別波の出現度数

(2)~(3)の作業を全ての観測データに対して行うことで、8 年間の観測期間中における全波 浪の出現頻度分布が得られる。これを全てのランクの計測データに重ね合わせることで、観測 期間中の波高の頻度分布が得られる。

表で計算手順を示すと、まず表 - 3.2.2 の有義波高頻度分布に表 - 3.2.3 のレーリー分布の確立密度を乗じると表 - 3.2.4 に(式 - 3.2)の 2 時間の間に出現した個別波の数Nを乗じると表 - 3.2.5 に示す度数分布となる。

周期(sec)	0.00	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	合計	平均
波高(m)	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50		周期T。
0.0 ~ 1.0	0	28638518	72107828	11274393	506101	100272	46725	2304	0	112676141	1.65
1.0 ~ 2.0	0	202	46153	261286	43186	1743	1954	0	0	354524	2.93
2.0 ~ 2.1	0	0	91	1415	1104	29	94	0	0	2733	3.33
2.1 ~ 2.2	0	0	69	954	885	21	79	0	0	2008	3.37
2.2 ~ 2.3	0	0	54	647	710	15	66	0	0	1492	3.41
2.3 ~ 2.4	0	0	42	442	571	11	54	0	0	1120	3.45
2.4 ~ 2.5	0	0	32	303	459	8	44	0	0	846	3.48
2.5 ~ 2.6	0	0	25	208	370	5	36	0	0	644	3.52
2.6 ~ 2.7	0	0	19	143	298	4	28	0	0	492	3.55
2.7 ~ 2.8	0	0	15	99	241	2	22	0	0	379	3.57
2.8 ~ 2.9	0	0	11	68	194	2	17	0	0	292	3.60
2.9 ~ 3.0	0	0	8	47	156	1	13	0	0	225	3.62
3.0 ~ 4.0	0	0	20	98	557	2	38	0	0	715	3.68
4.0 ~ 5.0	0	0	0	1	46	0	1	0	0	48	3.77
5.0 ~ 6.0	0	0	0	0	2	0	0	0	0	2	3.75
6.0 ~ 7.0	0	0	0	0	0	0	0	0	0	0	0.00
7.0 ~ 8.0	0	0	0	0	0	0	0	0	0	0	0.00
8.0 ~ 9.0	0	0	0	0	0	0	0	0	0	0	0.00
出現度数	0	28638720	72154367	11540104	554880	102115	49171	2304	0	113041661	1.65
出現率(%)	0.00	25.33	63.83	10.21	0.49	0.09	0.04	0.00	0.00		
累積度数	0	28638720	100793087	112333191	112888071	112990186	113039357	113041661	113041661		
累積率(%)	0.00	25.33	89.16	99.37	99.86	99.95	100.00	100.00	100.00		

表 - 3.2.5 観測期間中の個別波の出現度数

### (5) 平均周期、出現回数の計算

(式 - 3.3)で得られた観測期間中の平均の周期T を求め、平均の周期を用いて耐用期間中に起こる総波数を求める。耐用期間中の総波数を観測期間中の総波数で除した係数 $\alpha$  に、表 - 3.2.5 に求めたそれぞれの波高・周期別度数を乗じることで耐用期間 50 年の間に起こる波浪データを算出する。求めた波浪観測区域における平均波高・平均周期の頻度分布を表 - 3.2.6 に示す。

使用限界状態の検討においては、耐用期間中にある値以上の波が 10000 回来襲する波高を用いる。表 - 3.2.6 の累積度数 1 万回にある波高ランク、その波高ランクにおける平均周期を観測地点の検討波とし、ここでは、浅水変形係数  $K_s$  による変形計算を行い、設計位置における堤前波を求める。(表 - 3.2.7 参照)

$$\alpha = \frac{50 \times 365 \times 24 \times 3600 / 1.65}{113041661} = 8.44$$

表 - 3.2.6 耐用期間中の出現度数

周期(sec)	0.00	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67					設計	波高[累積	1万回1
	~	~	~	~	~	~	~	~	~	出現度数	出現率 (%)	累積度数	累積率 (%)	判定	波高	周期
波高(m)	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50		(10)		(/0)	判走	$H_D(m)$	$T_D(sec)$
0.0 ~ 1.0	0	241728293	608638414	95163436	4271832	846363	394390	19447	0	951062175	99.68	954147410	100.00	1		
1.0 ~ 2.0	0	1705	389562	2205429	364519	14712	16493	0	0	2992420	0.31	3085235	0.32	-		
2.0 ~ 2.1	0	0	768	11944	9319	245	793	0	0	23069	0.00	92815	0.01	-		
2.1 ~ 2.2	0	0	582	8052	7470	177	667	0	0	16948	0.00	69746	0.01	-		
2.2 ~ 2.3	0	0	456	5461	5993	127	557	0	0	12594	0.00	52798	0.01	-		
2.3 ~ 2.4	0	0	355	3731	4820	93	456	0	0	9455	0.00	40204	0.00	-		
2.4 ~ 2.5	0	0	270	2558	3874	68	371	0	0	7141	0.00	30749	0.00	-		
2.5 ~ 2.6	0	0	211	1756	3123	42	304	0	0	5436	0.00	23608	0.00	-		
2.6 ~ 2.7	0	0	160	1207	2515	34	236	0	0	4152	0.00	18172	0.00			
2.7 ~ 2.8	0	0	127	836	2034	17	186	0	0	3200	0.00	14020	0.00	-		
2.8 ~ 2.9	0	0	93	574	1637	17	143	0	0	2464	0.00	10820	0.00		2.85	3.6
2.9 ~ 3.0	0	0	68	397	1317	8	110	0	0	1900	0.00	8356	0.00	×		
3.0 ~ 4.0	0	0	169	827	4701	17	321	0	0	6035	0.00	6456	0.00	×		
4.0 ~ 5.0	0	0	0	8	388	0	8	0	0	404	0.00	421	0.00	×		
5.0 ~ 6.0	0	0	0	0	17	0	0	0	0	17	0.00	17	0.00	×		
6.0 ~ 7.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00	×		
7.0 ~ 8.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00	×		
8.0 ~ 9.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00	×		
出現度数	0	241729998	609031235	97406216	4683559	861920	415035	19447	0	954147410	100.00	954147410	0.00			
出現率(%)	0.00	25.33	63.83	10.21	0.49	0.09	0.04	0.00	0.00	74.67						
累積度数	0	241729998	850761233	948167449	952851008	953712928	954127963	954147410	954147410	954147410						
累積率(%)	0.00	25.33	89.16	99.37	99.86	99.95	100.00	100.00	100.00	100.00						

表 - 3.2.7 使用限界設計波高

		観測地点O(水深 -3.8m)  積度数   代表波高   平均周期   波長   潮位										
波高ランク	累積度数	代表波高	平均周期	波長	潮	位						
		H(m)	T(sec)	$L_0(m)$	W.L	.(m)	$h_0(m)$	$h_0/L_0$	$H/L_0$	$Ks_0$		
2.8 ~ 2.9	10820	2.85	3.6	20.17	M.S.L.	+2.45	6.3	0.310	0.141	0.966		
	換算波高			設詞	†地点D(	水深 -2	.4m)					
	H'(m)	潮	位						$H_D(m)$			
	$= H/Ks_0$	W.L	.(m)	$h_D(m)$	$h_D/L_0$	H'/L₀	$Ks_D$		$=H\times Ks_D$			
	2.95	H.W.L.	+4.50	6.9	0.342	0.146	0.978		2.89			
				設計波高								
	潮化	立	採用波高	累積	度数	平均	月期					
	W.L.	(m)	$H_D(m)$			T(sec)						
	H.W.L.	+4.50	108	320	3	3.6						

表 - 3.2.6 の設計波高は波浪観測地点における設計波高であるため、設計対象地点における設計波高を算出する必要がある。まず、観測地点において設計波高 2.85m となるように換算沖波波高を逆算する(図 - 3.2.1 参照)。逆算した換算沖波波高を用いて設計対象地点の設計波を算出する(図 - 3.2.2 参照)。

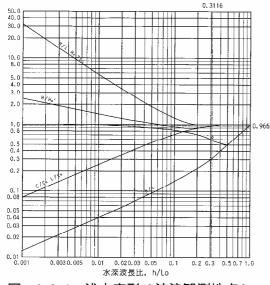



図 - 3.2.1 浅水変形 (波浪観測地点)

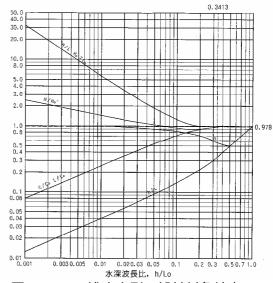
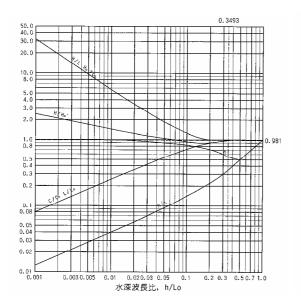



図 - 3.2.2 浅水変形(設計対象地点)

### 3.2.3 疲労限界状態に対する設計波浪の算出

使用限界状態での検討と同様な手順で実施し波浪観測地点における平均波高・平均周期の頻度分布を作成する。ただし、疲労限界状態での検討では波高ランクを 1m ピッチとする。

表 - 3.2.9 に設計対象地点における設計波の算出結果を示す。終局限界設計波高が 4.5m であるため、疲労限界設計波高も 4.5m を超える設計波高は考えないものとする。また、出現回数が 200 万回を超える波高についても検討は行わない。疲労限界状態における安全照査を行う設計波高は、4.5m、3.5m、2.5m の 3 ケースであり、浅水変形の計算図表も 3 ケースのみ示し、他のケースは省略する(図 - 3.2.3  $\sim$  3.2.8 参照)。


表 - 3.2.8 耐用期間中の出現度数

									.57451-							
	周期(sec)	0.00	0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	出現度数	出現率 (%)	累積度数	累積率	[出現度数2	·波高 00万回以下]
波高(m)		0.83	1.67	2.50	3.33	4.17	5.00	5.83	6.67	7.50		(70)		(%)	波高 H _D (m)	周期 T _D (sec)
0.0	~ 1.0	0	241728282	608638387	95163432	4271832	846363	394390	19447	0	951062133	99.68	954147382	100.00	0.5	1.6
1.0	~ 2.0	0	1705	389562	2205429	364519	14712	16493	0	0	2992420	0.31	3085249	0.32	1.5	2.9
2.0	~ 3.0	0	0	3089	36523	42102	827	3832	0	0	86373	0.01	92829	0.01	2.5	3.4
3.0	~ 4.0	0	0	169	827	4701	17	321	0	0	6035	0.00	6456	0.00	3.5	3.7
4.0	~ 5.0	0	0	0	8	388	0	8	0	0	404	0.00	421	0.00	4.5	3.8
5.0	~ 6.0	0	0	0	0	17	0	0	0	0	17	0.00	17	0.00	5.5	3.8
6.0	~ 7.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00		
7.0	~ 8.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00		
8.0	~ 9.0	0	0	0	0	0	0	0	0	0	0	0.00	0	0.00		
出	現度数	0	241729987	609031207	97406219	4683559	861919	415044	19447	0	954147382	100.00	954147382	0.00		
出现	見率(%)	0.00	25.33	63.83	10.21	0.49	0.09	0.04	0.00	0.00	74.67					
累	積度数	0	241729987	850761194	948167413	952850972	953712891	954127935	954147382	954147382	954147382					
累和	責率(%)			89.16	99.37	99.86	99.95	100.00	100.00	100.00	100.00					

表 - 3.2.9 疲労限界設計波高

[M.S.L.+2.45m]

							[M.S	S.L.+2.45m]
			観	測地点(水	深 -3.8m)			
波高ランク	出現度数	代表波高	平均周期	波長	水深			浅水係数
	(回)	H(m)	T(sec)	$L_0(m)$	h ₀ (m)	$h_0/L_0$	H/L ₀	Ks ₀
0.0 ~ 1.0	951062133	0.50	1.6	4.24	6.3	1.474	0.118	1.000
1.0 ~ 2.0	2992420	1.50	2.9	13.39	6.3	0.467	0.112	1.000
2.0 ~ 3.0	86373	2.50	3.4	18.25	6.3	0.342	0.137	0.981
3.0 ~ 4.0	6035	3.50	3.7	21.13	6.3	0.296	0.166	0.958
4.0 ~ 5.0	404	4.50	3.8	22.14	6.3	0.282	0.203	0.950
5.0 ~ 6.0	17	5.50	3.8	21.94	6.3	0.285	0.251	0.950
合計	954147382							
	換算波高			設計划	也点(水深			
	H'(m)	水深			浅水係数		波高	出現度数
	$= H/Ks_0$	$h_D(m)$	$h_D/L_0$	H'/L₀	Ks₀		$ imes$ Ks $_{ exttt{D}}$	(回)
	0.50	4.9	1.144	0.118	1.000		50	951062133
	1.50	4.9	0.362	0.112	0.991		49	2992420
	2.55	4.9	0.266	0.137	0.946	2.	41	86373
	3.65	4.9	0.230	0.166	0.918		35	6035
	4.74	4.9	0.219	0.203	0.912		32	404
	5.79	4.9	0.221	0.251	0.912	5.	28	17
								954147382
			再整理					
波高ランク	採用波高		度数		周期			
	H _D (m)	([	回)	T(s	sec)			
0.0 ~ 1.0	0.5		951062133		.6			
1.0 ~ 2.0	1.5		2992420		.9			
2.0 ~ 3.0	2.5		86373		. 4			
3.0 ~ 4.0	3.5		6035		.7			
4.0 ~ 5.0	4.5		404		. 8			
5.0 ~ 6.0	5.5		17	3	.8			
			954147382					



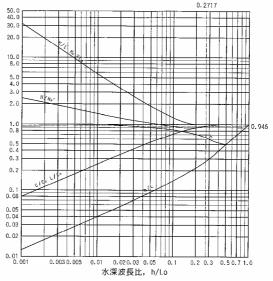



図 - 3.2.3 浅水変形 (波浪観測地点: 2.5m)

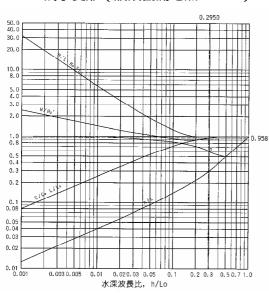



図 - 3.2.4 浅水変形(設計対象地点: 2.5m)

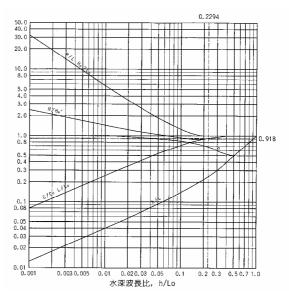



図 - 3.2.5 浅水変形 (波浪観測地点: 3.5m)

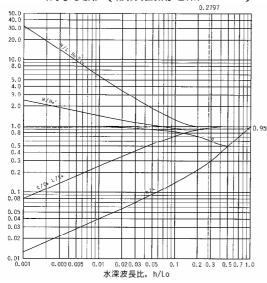



図 - 3.2.6 浅水変形 (設計対象地点: 3.5m)

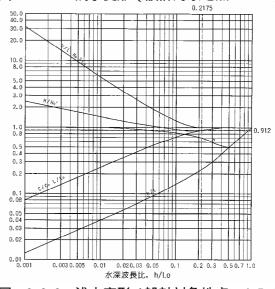



図 - 3.2.7 浅水変形 (波浪観測地点: 4.5m)

図 - 3.2.8 浅水変形 (設計対象地点: 4.5m)

## 3.3 各部材に作用する外力の計算

# 3.3.1 安定計算のまとめ

安定計算結果のまとめを以下に示す。

## (1) 終局限界状態

## 1) 完成時

	端距	业圧 (kN/	m2)			鉛直波力	(kN/m2)				
	P1(港外側)	P2(港内側)	幅(m)	港外端 前壁 後壁 港							
静穏時	20.92	20.92	11.4	0	0	0	0	0	0		
押し波時	23.45	31.10	11.4	16.20	20.10	0	3.02	0	0		
引き波時	32.79	0	9.85	-18.31	-22.73	0	0	0	0		
鉛直波力最大時	28.74	28.81	11.4	0	36.36	29.54	29.54	13.64	0		
地震時	5.22	36.56	11.4				-				
地辰时	36.55	5.32	11.4	-							

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)
	(kNm/本)	港外側	港内側
押し波時	530.15	-225.07	225.37
引き波時	304.36	0	0
鉛直波力最大時	311.96	-73.90	229.25
地震時	406.23	-89.93	90.07
心压时	406.23	90.50	-90.35

杭の軸力の引抜力は負

## 2) 施工時

	端趾圧 (kN/m2)				鉛直波力 (kN/m2)					
	P1(港外側)	P2(港内側)	幅(m)	港外端	前	壁	後	壁	港内端	
静穏時	20.92	20.92	11.4	0	0	0	0	0	0	
押し波時	34.09	15.44	11.4	0	0	0	0	13.23	9.85	
引き波時	0.23	31.34	11.4	0	0	0	0	-17.68	-13.16	
鉛直波力最大時	28.80	28.75	11.4	0	10.61	22.98	22.98	28.28	0	

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)	
	(kNm/本)	港外側	港内側	
押し波時	370.38	140.40	-140.33	
引き波時	238.07	0	0	
鉛直波力最大時	209.23	148.23	-59.87	

杭の軸力の引抜力は負

## (2) 使用限界状態

## 1) 完成時

端趾圧 (kN/m2)			鉛直波力 (kN/m2)						
	P1(港外側)	P2(港内側)	幅(m)	港外端	前	壁	後	壁	港内端
静穏時	20.92	20.92	11.4	0	0	0	0	0	0
押し波時	8.27	36.04	11.4	1.81	5.10	0	0.76	0	0
引き波時	33.03	2.28	11.4	-5.21	-14.65	0	0	0	0
鉛直波力最大時	28.76	28.79	11.4	0	23.43	19.04	19.04	8.79	0

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)	
	(kNm/本)	港外側	港内側	
押し波時	204.79	-62.58	62.63	
引き波時	188.98	0	0	
鉛直波力最大時	121.74	-39.85	86.83	

杭の軸力の引抜力は負

## 2) 施工時

	端距	端趾圧 (kN/m2)			鉛直波力 (kN/m2)						
	P1(港外側)	P2(港内側)	幅(m)	港外端	前壁		後壁		港内端		
静穏時	20.92	20.92	11.4	0	0	0	0	0	0		
押し波時	36.10	8.00	11.4	0	0	0	0	5.10	1.74		
引き波時	2.28	33.02	11.4	0	0	0	0	-14.65	-4.99		
鉛直波力最大時	28.79	28.76	11.4	0	8.79	19.04	19.04	23.43	0		

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)	
	(kNm/本)	港外側	港内側	
押し波時	214.04	67.65	-67.45	
引き波時	188.65	0	0	
鉛直波力最大時	121.04	87.23	-39.65	

杭の軸力の引抜力は負

## (3) 疲労限界状態

## 1) H=4.5m の場合

	端距	端趾圧 (kN/m2)			鉛直波力 (kN/m2)				
	P1(港外側) P2(港内側) 幅(m) 港外端 前壁		後壁		港内端				
押し波時	20.21	32.39	11.4	5.35	14.59	0	2.19	0	0
引き波時	23.13	12.12	11.4	-8.33	-22.73	0	0	0	0
鉛直波力最大時	28.75	28.80	11.4	0	36.36	29.54	29.54	13.64	0

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力 (kN/本)			
	(kNm/本)	港外側	港内側		
押し波時	404.94	-172.03	172.15		
引き波時	169.20	0	0		
鉛直波力最大時	243.74	-16.40	206.13		

杭の軸力の引抜力は負

## 2) H=3.5m の場合

	端趾圧 (kN/m2)			鉛直波力 (kN/m2)					
	P1(港外側)	P2(港内側)	幅(m)	港外端	前壁		後壁		港内端
押し波時	16.99	33.56	11.4	3.45	10.75	0	1.61	0	0
引き波時	24.45	13.34	11.4	-5.68	-17.68	0	0	0	0
鉛直波力最大時	28.78	28.78	11.4	0	28.28	22.98	22.98	10.61	0

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)	
	(kNm/本)	港外側	港内側	
押し波時	280.27	-103.42	103.53	
引き波時	136.39	0	0	
鉛直波力最大時	169.18	-15.28	137.22	

杭の軸力の引抜力は負

## 3) H=2.5m の場合

	端趾圧 (kN/m2)				鉛直波力 (kN/m2)				
	P1(港外側)	P2(港内側)	幅(m)	港外端	前	壁	後	壁	港内端
押し波時	13.43	34.72	11.4	0.98	6.41	0	0.96	0.00	0
引き波時	25.69	14.99	11.4	-1.94	-12.63	0	0	0	0
鉛直波力最大時	28.77	28.79	11.4	0	20.20	16.41	16.41	7.58	0

鉛直波力の上向き荷重は負

	杭頭モーメント	杭の軸力	(kN/本)
	(kNm/本)	港外側	港内側
押し波時	158.28	-35.63	35.65
引き波時	97.18	0	0
鉛直波力最大時	96.28	-13.87	68.18

杭の軸力の引抜力は負

## 3.3.2 各部材に作用する外力の計算

## (1)終局限界状態

1) 前壁に作用する外力

前壁に作用する外力は波力のみである。

 $(kN/m^2)$ 

	$H_D$	港外側から作用		港内側から作用			
完成時	4.5	1.4	$_0H_D$	63.63	0.8	$_0H_D$	36.36
施工時	3.5	-		-	-		-
採用荷	苛重 H			63.63			36.36
設計荷	重 1.3H			82.72			47.27

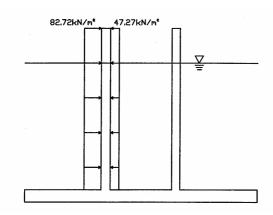



図 - 3.3.1 前壁に作用する外力

## 2) 後壁に作用する外力

後壁に作用する外力は波力のみである。

 $(kN/m^2)$ 

	$H_D$	港外側から作用		港内側から作用		
完成時	4.5	1.1 ₀ H _D	50.00	-	-	
施工時	3.5	-	-	1.4 ₀ H _D	49.49	
採用荷	苛重 H		50.00		49.49	
設計荷	重 1.3H		65.00		64.34	

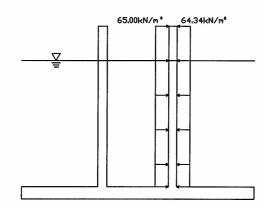



図 - 3.3.2 後壁に作用する外力

## 3) 側壁に作用する外力

側壁に作用する外力は波力のみである。

 $(kN/m^2)$ 

			,	
	$H_D$	港外側から作用		
完成時	4.5	1.1	₀Н₀	50.00
施工時	3.5	-		-
採用荷重 H				50.00
設計荷重 1.3H				65.00

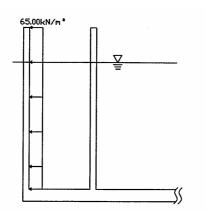



図 - 3.3.3 側壁に作用する外力

## 4) 隔壁に作用する外力

隔壁に作用する外力は波力のみである。

 $(kN/m^2)$ 

				( KIV/ III )
_	$H_D$	港外側から作用		
完成時	4.5	1.1	$_0H_D$	50.00
施工時	3.5	-		-
採用荷重 H				50.00
設計荷重 1.3H				65.00

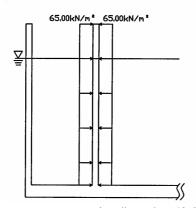



図 - 3.3.4 隔壁に作用する外力

### 5) 底版、フーチングに作用する外力

### a) 吊り上げ時

堤体を起重機船により吊り上げたときの検討を行う。なお、上向きの荷重は正(+)、 下向きの荷重は負(-)とする。

#### 底版・フーチング自重 D

 $D = c \cdot t$ 

 $=24.0\times0.6$ 

 $= 14.40 \text{kN/m}^2$ 

#### 設計荷重 W

単位:kN/m²

検討位置	港外端	前壁	前壁中心		後壁中心		港内端
支点~距離	0	3.9	975	7.4		. 4	11.4
自重 D	-14.40	-14.40	-14.40		-14.40	-14.40	-14.40
終局限界							
	1.1	1.1	1.1		1.1	1.1	1.1
D	-15.84	-15.84	-15.84		-15.84	-15.84	-15.84

#### ・終局限界状態

 $-15.84 \text{ kN/m}^2$ 

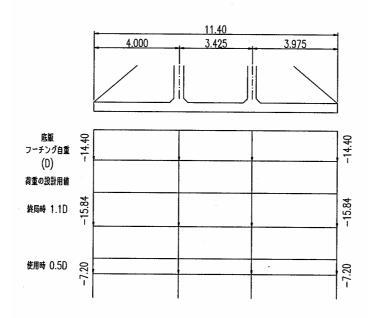



図 - 3.3.5 荷重合成図(吊り上げ時)

### b) 永久荷重(静穏時)

 $D = t \cdot c$ 

 $=0.6\times24.0$ 

 $= 14.40 \text{kN/m}^2$ 

#### 静水圧 F

 $F = t \cdot w$ 

 $=0.6\times10.1$ 

 $= 6.06kN/m^2$ 

#### 底面反力 R

 $R1 = 20.92kN/m^2$ 

 $R2 = 20.92kN/m^2$ 

### 合成荷重 Do(永久荷重)

単位:kN/m²

検討位置	港外端	前壁	前壁中心		後壁	中心	港内端
支点~距離	0.00	3.9	3.975		7.	40	11.40
自重 D	-14.40	-14.40	-14.40		-14.40	-14.40	-14.40
静水圧 F	6.06	6.06	6.06		6.06	6.06	6.06
底面反力 R	20.92	20.92	20.92		20.92	20.92	20.92
合成荷重	12.58	12.58	12.58		12.58	12.58	12.58

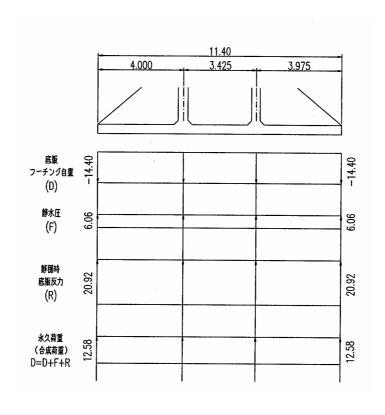



図 - 3.3.6 荷重合成図(静穏時)

#### c) 波力作用時

ここでは、完成時の押し波時のみ記述し、他ケースは結果のみ示す。

・底面反力 R' 基本設計の結果を用いる。 底面反力は、台形分布である。

R1= 23.45 kN/m² (港外端) R2= 31.10 kN/m² (港内端)

・底面反力変動 R 永久荷重(静穏時)の底面反力に対して変動した荷重を求める。

R = R' - R

単位:kN/m²

	** **								<u> </u>	47 111
検討位置		港外端		前壁	中心		後壁	中心		港内端
支点~距離		11.40		7.	40		3.	975		0.00
底面反力	R'	23.45		26.12	26.12		28.42	28.42		31.10
"(静穏時)	R	20.92		20.92	20.92		20.92	20.92		20.92
変動荷重	R	2.53		5.20	5.20		7.50	7.50		10.18
荷重方向										

# ・鉛直波力 H

単位:kN/m²

							<u> </u>	3 1/ 111
検討位置		港外端	前壁	中心	後壁	中心		港内端
支点 ~ 距離		11.40	7.	40	3.9	975		0.00
鉛直波力	Н	-16.20	-20.10	0.00	-3.02	0.00		0.00
荷重方向								

#### ・合成荷重 W'

W' = Do + R + H

単位:kN/m²

	検討位置		港外端	前壁	中心	後壁	中心	港内端
	支点~距離		11.40	7.	40	3.	975	0.00
	永久荷重	Do	12.58	12.58	12.58	12.58	12.58	12.58
変動	底面反力変動	R	2.53	5.20	5.20	7.50	7.50	10.18
荷 重	鉛直波力	Н	-16.2	-20.10	0.00	-3.02	0.00	0.00
	合成荷重	W'	-1.09	-2.32	17.78	17.06	20.08	22.76
	荷重方向							

### ・設計荷重 W

W = Do + R + H 単位: kN/m²

				于 I L N N N					
	検討位置		港外端	前壁	中心	後壁	中心	港	内端
	支点~距離		11.40	7.	7.40		975		0.00
	荷重方向	R							
	19里刀凹								
			0.90	0.90	1.10	1.10	1.10		1.10
	永久荷重	Do	12.58	12.58	12.58	12.58	12.58		12.58
		Do	11.32	11.32	13.84	13.84	13.84		13.84
			0.80	0.80	1.20	1.20	1.20		1.20
	底面反力	R	2.53	5.20	5.20	7.50	7.50		10.18
	(1.2 Rと	R	2.02	4.16	6.24	9.00	9.00		12.22
変	1.1Rの照査)	-							
動荷		R							
荷		'R							
重	採用値		2.02	4.16	6.24	9.00	9.00		12.22
			1.30	1.30	1.30	0.70	1.30		1.30
	鉛直波力	Н	-16.20	-20.10	0.00	-3.02	0.00		0.00
		Н	-21.06	-26.13	0.00	-2.11	0.00		0.00
	設計荷重	W	-7.71	-10.65	20.08	20.72	22.84		26.05

注:変動荷重のうち Rが下向きに作用する場合、MIN { 1.2 | R | , 1.1 | R | } とする。

### ・設計用値

検討位置	港外端	前壁	中心	後壁	中心	港内端
支点~距離	11.40	7.	40	3.9	975	0.00
下向き荷重	-7.71	-10.65	0.00	0.00	0.00	0.00
上向き荷重	0.00	0.00	20.08	20.72	22.84	26.05

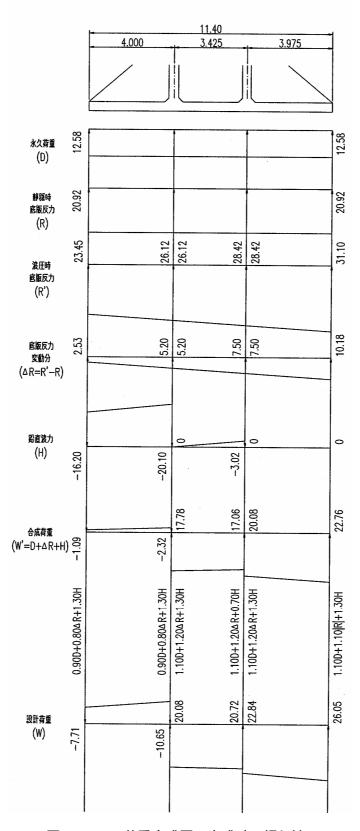



図 - 3.3.7 荷重合成図 (完成時、押し波)

# d) まとめ

							<u> 半江,Ki</u>	<b>11</b> / III
検討位置	港外端	前壁中心		後壁	中心		港内端	
支点~距離	0.00	3.9	975		7.	40		11.40
吊上げ時	-15.84	-15.84	-15.84		-15.84	-15.84		-15.84
中工八时	0.00	0.00	0.00		0.00	0.00		0.00
下向きの荷重	-15.84	-15.84	-15.84		-15.84	-15.84		-15.84
上向きの荷重	0.00	0.00	0.00		0.00	0.00		0.00
波力作用時								
完・押し波時	-7.71	-10.65	0.00		0.00	0.00		0.00
元・押し返時	0.00	0.00	20.08		20.72	22.84		26.05
完・引き波時	0.00	0.00	0.00		-3.99	-3.99		-11.69
元、川〇次时	51.89	42.30	12.75		0.00	0.00	0.00	0.00
完・鉛直波最大時	0.00	-29.99	-20.81		-20.78	0.00		0.00
元 如且	23.22	0.00	0.00		0.00	13.73		23.31
施・押し波時	0.00	0.00	0.00		0.00	0.00		-8.06
心・押し返時	29.64	21.84	21.84		15.11	5.85		0.00
施・引き波時	-11.69	0.00	0.00		0.00	0.00		0.00
加。 川 C 冰村	0.00	5.97	5.97		13.44	36.42		43.45
施・鉛直波最大時	0.00	0.00	-12.27		-12.26	-19.15		0.00
	23.23	15.83	0.00		0.00	0.00		23.29
下向きの荷重	-11.69	-29.99	-20.81		-20.78	-19.15		-11.69
上向きの荷重	51.89	42.30	21.84		20.72	36.42		43.45
地震時								
港内側起点	-3.12	0.00	0.00		0.00	0.00		0.00
尼内则起点	0.00	7.81	10.81		14.22	17.22		28.22
港外側起点	0.00	0.00	0.00		0.00	0.00		-3.02
/871则起从	28.21	17.32	14.32		10.94	7.94		0.00
下向きの荷重	-3.12	0.00	0.00		0.00	0.00		-3.02
上向きの荷重	28.21	17.32	14.32		14.22	17.22		28.22

# 波力作用時 地震時

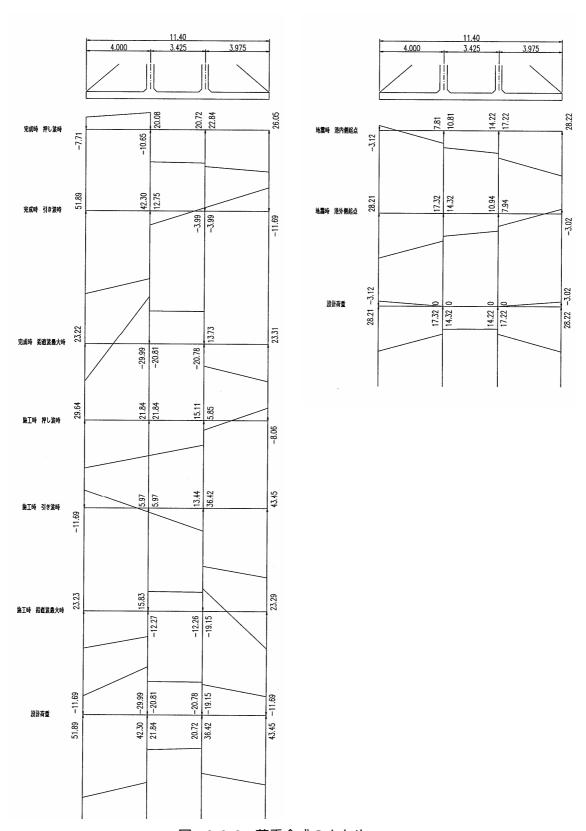
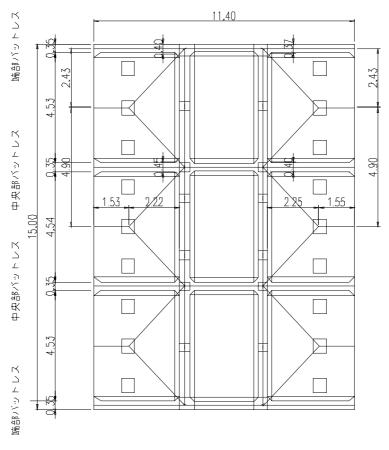



図 - 3.3.8 荷重合成のまとめ

#### 6) バットレスに作用する外力


a) バットレスに対して垂直に作用する外力

 $(kN/m^2)$ 

	H _D	港外側バ	ットレス	港内側バ	シトレス
完成時	4.5	$0.8 _{0}H_{D}$	36.36	-	-
施工時	3.5	-	-	$0.8  _0H_D$	28.28
採用荷	苛重 H		36.36		28.28
設計荷	設計荷重 1.3H		47.27		36.76

#### b) バットレスの軸方向に作用する外力

- ・上からの荷重に対する設計方法については、T型梁として計算を行う。
- ・下からの荷重に対する設計方法については、部材断面を4断面に設定し、その位置ごとの曲げモーメントを片持ち梁として求め、バットレス厚を有する単鉄筋矩形梁として必要鉄筋量を算出する。
- ・バットレスの軸方向に作用する荷重は、フーチング部の設計荷重に下図に示す荷重分担 幅を乗じたものを用いる。



港外側	法線平行方向		法線直角方向
	中央部	端部	
設計荷重×分担幅	4.90 m	2.43 m	1.53 m
設計荷重×分担幅	0.45 m	0.40 m	2.22 m
港内側			
設計荷重×分担幅	4.90 m	2.43 m	1.55 m
設計荷重×分担幅	0.40 m	0.37 m	2.25 m

# 吊り上げ時

# ・中央部

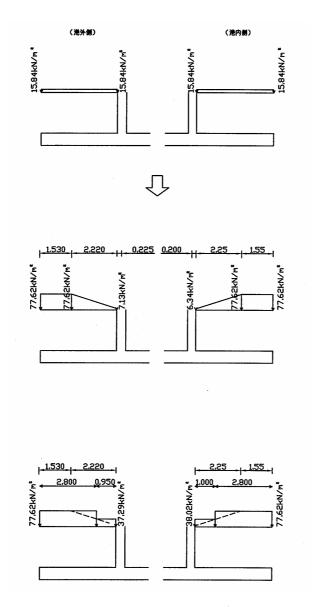



図 - 3.3.9 荷重合成図(吊り上げ時、中央部)

# ・端部

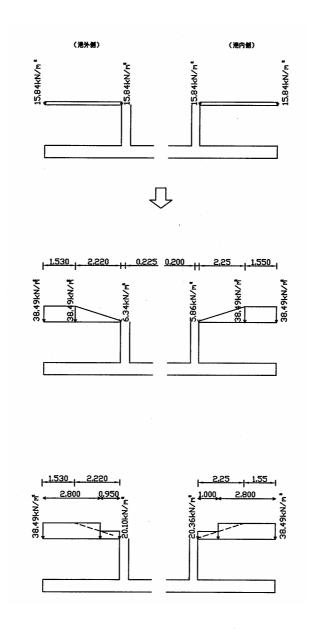



図 - 3.3.10 荷重合成図(吊り上げ時、端部)

# ・中央部

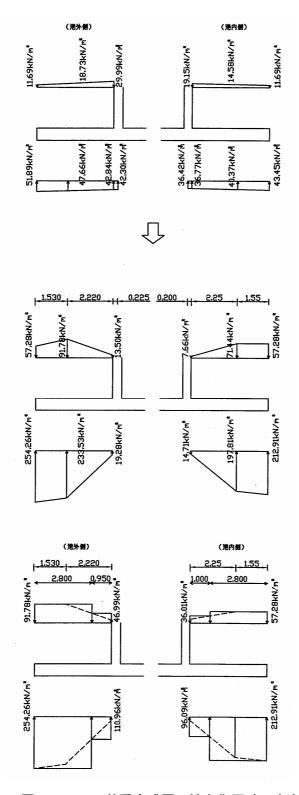



図 - 3.3.11 荷重合成図 (波力作用時、中央部)

# ・端部

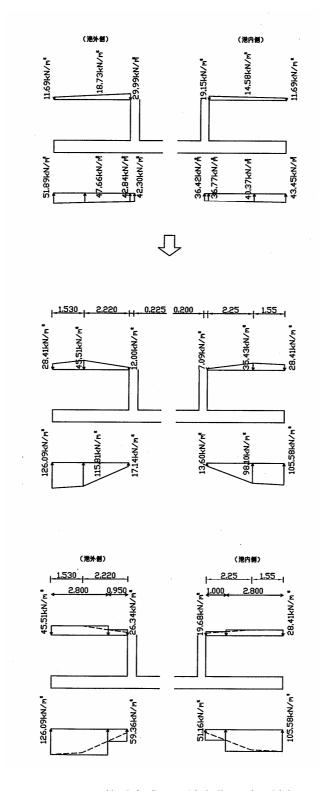



図 - 3.3.12 荷重合成図(波力作用時、端部)

まとめ 外力のまとめを示す。

	単位	$(kN/m^2)$				
	中央部	下向き	77.62	37.29	38.02	77.62
吊り上げ時	유	上向き	1	1	1	-
	端部	下向き	38.19	20.10	20.36	38.49
	마마	上向き	-	-	1	-
	中央部	下向き	91.78	46.99	36.01	57.28
  波力作用時	유	上向き	254.26	110.96	96.09	212.91
以八十十五	端部	下向き	45.51	26.34	19.68	28.41
	마마	上向き	126.09	59.36	51.16	105.58
	中央部	下向き	1	-	1	-
地震時	유	上向き	138.23	8.07	7.11	138.28
	端部	下向き	-	-	-	-
	ᄓᇛᅋᄰ	上向き	68.55	7.18	6.57	68.57

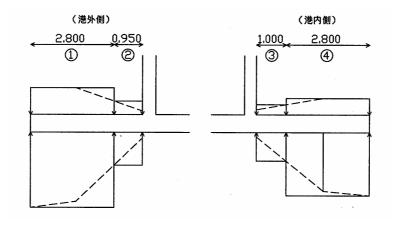



図 - 3.3.13 外力作用図

### (2) 使用限界状態

使用限界状態の外力については結果のみ示す。

### 1) 前壁に作用する外力

 $(kN/m^2)$ 

	H _D	港外側か	ら作用	港内側加	から作用
完成時	2.9	1.4 ₀ H _D	41.01	$0.8  _0H_0$	23.43
施工時	2.9	-	-	-	-
採用花	苛重 H		41.01		23.43
設計荷	重 1.0H		41.01		23.43

### 2) 後壁に作用する外力

 $(kN/m^2)$ 

	$H_D$	港外側か	ら作用	港内側加	から作用
完成時	2.9	1.1 _o H _D	32.22	-	-
施工時	2.9	-	-	1.4 ₀ H _D	41.01
採用荷	苛重 H		32.22		41.01
設計荷	重 1.0H		32.22		41.01

### 3) 側壁

 $(kN/m^2)$ 

				<u> </u>
	$H_D$	港统	から作用	
完成時	2.9	1.1	$_0H_D$	32.22
施工時	2.9	-		-
採用荷	苛重 H			32.22
設計荷			32.22	

### 4) 隔壁

 $(kN/m^2)$ 

				` ,		
	$H_D$	港外側から作用				
完成時	2.9	1.1	οH _D	32.22		
施工時	2.9	-	•	-		
採用荷	採用荷重 H			32.22		
設計荷	重 1.0H			32.22		

# 5) 底版、フーチングに作用する外力

### a) 吊り上げ時

終局限界状態を参照とし、ここでは結果のみ示す。

#### ・使用限界状態

 $-7.20 \text{ kN/m}^2$ 

#### b) 永久荷重(静穏時)

終局限界状態と同様のため、省略する。

#### c) 波圧作用時

ここでは、完成時の押し波時のみ記述し、他ケースは結果のみ示す。

・底面反力 R'

基本設計の結果を用いる。

底面反力は、台形分布である。

R1= 8.27 kN/m² (港外端)

R2= 36.04 kN/m² (港内端)

・底面反力変動 R

永久荷重(静穏時)の底面反力に対して変動した荷重を求める。

R = R' - R

単位:kN/m²

-							<u> </u>	,
検討位置		港外端	前壁	中心	後壁	中心		港内端
支点~距離		11.40	7.	40	3.9	975		0.00
底面反力	R'	8.27	17.95	17.95	26.3	26.3		36.04
"(静穏時)	R	20.92	20.92	20.92	20.92	20.92		20.92
変動荷重	R	-12.65	-2.97	-2.97	5.38	5.38		15.12
荷重方向								

#### ・鉛直波力 H

<u>単位:kN/m²</u>

検討位置		港外端	前壁中心		後壁中心		港内端	
支点~距離		11.40	7.	40		3.9	975	0.00
鉛直波力	Н	-1.81	-5.10	0.00		-0.76	0.00	0.00
荷重方向								

#### ・合成荷重 W'

W' = Do + R + H

			VV - D	י וע	' ' ' ' ' '				<u> </u>	.IN / III
	検討位置港		検討位置 港外端 前壁中心		後壁中心			港内端		
	支点~距離		11.40		7.40		3.975			0.00
	永久荷重	Do	12.58		12.58	12.58	12.58	12.58		12.58
変動	底面反力変動	R	-12.65		-2.97	-2.97	5.38	5.38		15.12
荷重	鉛直波力	Н	-1.81		-5.10	0.00	-0.76	0.00		0.00
	合成荷重	W'	-1.88		4.51	9.61	17.20	17.96		27.70
	荷重方向									

#### ·設計荷重 W

単位:kN/m² W = Do +R + H 検討位置 港外端 前壁中心 後壁中心 港内端 支点~距離 11.40 7.40 3.975 0.00 R 荷重方向 W' 1.00 1.00 1.00 1.00 1.00 1.00 Do 永久荷重 12.58 12.58 12.58 12.58 12.58 12.58 12.58 Do 12.58 12.58 12.58 12.58 12.58 1.00 1.00 1.00 1.00 1.00 1.00 底面反力 R -12.65 -2.97 -2.97 5.38 5.38 15.12 変動荷 -2.97 -2.97 15.12 -12.65 5.38 5.38 1.00 1.00 1.00 1.00 1.00 1.00 鉛直波力 Н -1.81 -5.10 0.00 -0.76 0.00 0.00 Н -1.81 -5.10 0.00 -0.76 0.00 0.00 27.70 設計荷重 W -1.88 4.51 9.61 17.20 17.96

#### ・設計用値

						 ,
検討位置	港外端	Ē	前壁中心	後壁	中心	港内端
支点~距離	11.40		7.40	3.9	975	0.00
下向き荷重	-1.88	0	.00 0.00	0.00	0.00	0.00
上向き荷重	0.00	4	.51 9.61	17.20	17.96	27.70

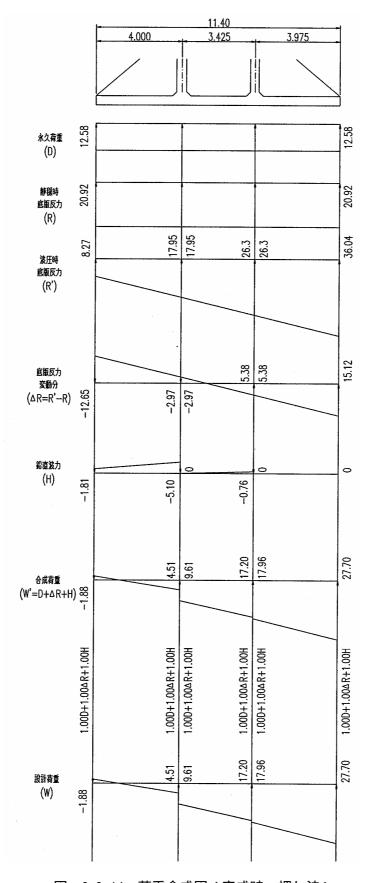



図 - 3.3.14 荷重合成図(完成時、押し波)

# d) まとめ

14+14-11	\44 £1 A111	<b>-&gt;</b>		// D#	\	<u> </u>
検討位置	港外端	<b></b>	中心	後壁	中心	港内端
支点~距離	0.00	3.9	975	7.	40	11.40
吊上げ時	-7.20	-7.20	-7.20	-7.20	-7.20	-7.20
山工1744	0.00	0.00	0.00	0.00	0.00	0.00
下向きの荷重	-7.20	-7.20	-7.20	-7.20	-7.20	-7.20
上向きの荷重	0.00	0.00	0.00	0.00	0.00	0.00
波力作用時						
完・押し波時	-1.88	0.00	0.00	0.00	0.00	0.00
元 1年 〇 / 汉时	0.00	4.51	9.61	17.20	17.96	27.70
完・引き波時	0.00	0.00	0.00	0.00	0.00	-6.06
元、河区水村	29.90	28.62	13.97	4.73	4.73	0.00
完・鉛直波最大時	0.00	-3.00	0.00	0.00	0.00	0.00
九 如且从取入时	20.42	0.00	1.39	1.40	11.65	20.45
施・押し波時	0.00	0.00	0.00	0.00	0.00	-2.08
ルピーコヤロル文中寸	27.76	17.96	17.96	9.52	4.42	0.00
施・引き波時	-6.06	0.00	0.00	0.00	0.00	0.00
1個、210/244	0.00	4.66	4.66	13.89	28.54	29.67
施・鉛直波最大時	0.00	0.00	0.00	 0.00	-3.00	0.00
加	20.45	11.65	1.40	1.39	0.00	20.42
下向きの荷重	-6.06	-3.00	0.00	0.00	-3.00	-6.06
上向きの荷重	29.90	28.62	17.96	17.20	28.54	29.67

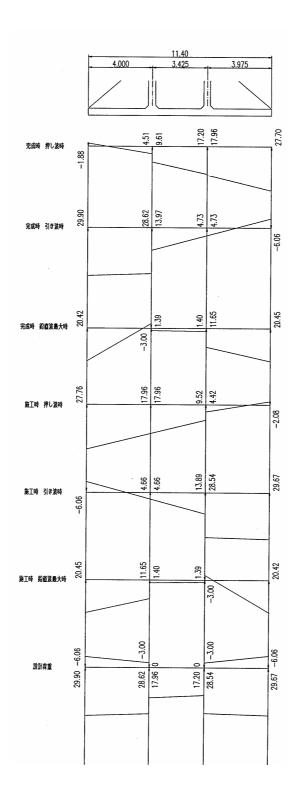



図 - 3.3.15 荷重合成のめとめ

# 6) バットレスに作用する外力

# a) バットレスに対して垂直に作用する外力

 $(kN/m^2)$ 

·	$H_D$	港外側バ	ットレス	港内側バットレ		
完成時	2.9	0.8 ₀ H _D	23.43	-	-	
施工時	2.9	-	-	0.8 ₀ H _D	23.43	
採用荷	苛重 H		23.43		23.43	
設計荷重 1.0H			23.43		23.43	

### b) バットレスの軸方向に作用する外力

詳細は、終局限界状態を参照とし、ここでは結果のみ示す。

						1
	単位	$(kN/m^2)$				
	中央部	下向き	35.28	16.95	17.28	35.28
トリント 日り上げ時	千大品	上向き	-	-	-	-
市リエリ時	端部	下向き	17.50	9.13	9.26	17.50
	미미	上向き	-	-	1	-
	中央部	下向き	29.69	11.00	11.27	29.69
   波力作用時	유	上向き	146.51	68.89	69.90	145.38
放力作用時	端部	下向き	11.86	5.76	5.88	14.73
	נום נות	上向き	72.66	37.06	37.39	72.10

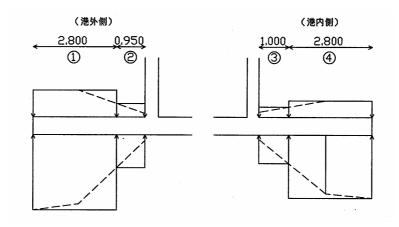



図 - 3.3.16 設計外力分布図

# 3.3.3 疲労限界状態の外力の計算

計算手法は、終局限界状態と同じであるため、疲労限界状態の外力については、結果のみ示す。

# (1) 前壁に作用する外力

	出現波数	(千回)	0.4	6.0	86.4	2992.4	951062.1
	設計波高	HD(m)	4.5	3.5	2.5	1.5	0.5
	設計周期	T(s)	3.8	3.7	3.4	2.9	1.6
押波時	港外側から作	用 1.4WoHD	63.63	49.49	35.35	-	-
147区时	港内側から作	用 0.8WoHD	-36.36	-28.28	-20.20	-	-
引波時	港外側から作	用	0	0	0	-	-
71/及时	港内側から作	用 0.5WoHD	-22.73	-17.68	-12.63	-	-
鉛直最大時	港外側から作	用	16.66	12.90	9.13	-	-
如且取入时	港内側から作	用	0	0	0	-	-

### (2) 後壁に作用する外力

	出現波数	(千回)	0.4	6.0	86.4	2992.4	951062.1
	設計波高	HD(m)	4.5	3.5	2.5	1.5	0.5
	設計周期	T(s)	3.8	3.7	3.4	2.9	1.6
押波時	港外側から作	用 1.1WoHD	50.00	38.89	27.78	-	-
1世/反时	港内側から作	用	0	0	0	-	-
引波時	港外側から作	用	0	0	0	-	-
71/反时	港内側から作	用 0.5WoHD	-22.73	-17.68	-12.63	-	-
鉛直最大時	港外側から作	用	0	0	0	-	-
如且取入时	港内側から作	用	0	0	0	-	-

### (3) 側壁に作用する外力

	出現波数	(千回)	0.4	6.0	86.4	2992.4	951062.1
	設計波高	HD(m)	4.5	3.5	2.5	1.5	0.5
	設計周期	T(s)	3.8	3.7	3.4	2.9	1.6
押波時	内側から作用	1.1WoHD	50.00	38.89	27.78	-	-

### (4) 隔壁に作用する外力

	出現波数	(千回)	0.4	6.0	86.4	2992.4	951062.1
	設計波高	HD(m)	4.5	3.5	2.5	1.5	0.5
	設計周期	T(s)	3.8	3.7	3.4	2.9	1.6
押波時	内側から作用	1.1WoHD	50.00	38.89	27.78	-	-

### (5) 底版、フーチングに作用する外力

- 1) 永久荷重(静穏時)
  - a)底版・フーチング自重 D

D = 
$$t \cdot c$$
  
=  $0.6 \times 24.0$   
=  $14.40 \text{ kN/m}^2$ 

b)静水圧 F

$$F = t \cdot w$$
  
= 0.6×10.1  
= 6.06 kN/m²

c)底面反力 R

R1 =  $22.73 \text{ kN/m}^2$ R2 =  $22.73 \text{ kN/m}^2$ 

d)合成荷重 Do(永久荷重)

単位:kN/m²

							<u> </u>	• • • • • • • • • • • • • • • • • • • •
検討位置	港外端	前壁	前壁中心		後壁中心			港内端
支点~距離	0.00	3.975			7.40			11.40
自重 D	-14.40	-14.40	-14.40		-14.40	-14.40		-14.40
静水圧 F	6.06	6.06	6.06		6.06	6.06		6.06
底面反力 R	22.73	22.73	22.73		22.73	22.73		22.73
合成荷重	14.39	14.39	14.39		14.39	14.39		14.39

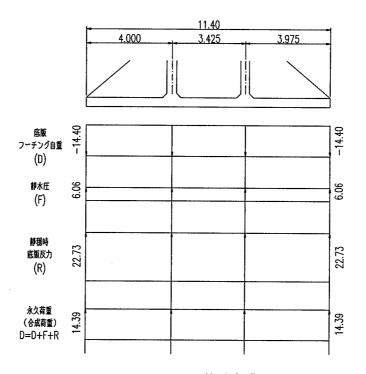



図 - 3.3.17 荷重合成図

### 2) H=4.5m

# a) 押し波時

基本設計の結果を用いる。

底面反力は、台形分布である。

R1= 20.21 kN/m² (港外端) R2= 32.39 kN/m² (港内端)

									<u> 구 년 : ド</u>	,
検討位置		港外端 前壁中心 後		後壁中心			港内端			
支点~距離		0.00		3.9	975		7.	40		0.00
自重	D	-14.40		-14.40	-14.40		-14.40	-14.40		-14.40
静水圧	F	6.06		6.06	6.06		6.06	6.06		6.06
底面反力	R'	20.21		24.46	24.46		28.12	28.12		32.39
鉛直波力	Н	-5.35		-14.59	0.00		-2.19	0.00		0.00
合成荷重		6.52		1.53	16.12		17.59	19.78		24.05
下向き荷重		0.00		0.00	0.00		0.00	0.00		0.00
上向き荷重		6.52	-	1.53	16.12		17.59	19.78		24.05

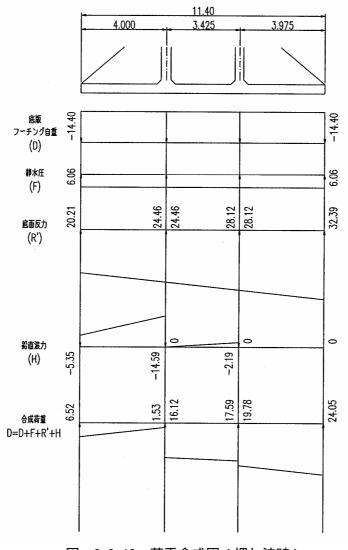



図 - 3.3.18 荷重合成図 (押し波時)

### b) 引き波時

基本設計の結果を用いる。

底面反力は、台形分布である。

R1= 23.13 kN/m² (港外端) R2= 12.12 kN/m² (港内端)

								<u> </u>	11/11
検討位置		港外端	前壁中心		後壁中心			港内端	
支点~距離		0.00	3.975			7.40			11.40
自重	D	-14.40	-14.40	-14.40		-14.40	-14.40		-14.40
静水圧	F	6.06	6.06	6.06		6.06	6.06		6.06
底面反力	R'	23.13	19.29	19.29		15.98	15.98		12.12
鉛直波力	Н	8.33	22.73	0.00		0.00	0.00		0.00
合成荷重		23.12	33.68	10.95		7.64	7.64		3.78
下向き荷重		0.00	0.00	0.00		0.00	0.00		0.00
上向き荷重		23.12	33.68	10.95		7.64	7.64		3.78

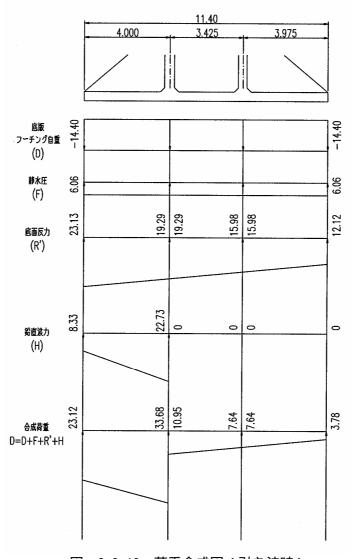



図 - 3.3.19 荷重合成図(引き波時)

### 3) H=3.5m

# a) 押し波時

底面反力は、台形分布である。

R1= 16.99 kN/m² (港外端) R2= 33.56 kN/m² (港内端)

•	港外端		前壁中心		後壁	中心		港内端	
	0.00		3.9	975		7.	40		0.00
D	-14.40		-14.40	-14.40		-14.40	-14.40		-14.40
F	6.06		6.06	6.06		6.06	6.06		6.06
R'	16.99		22.77	22.77		27.75	27.75		33.56
Н	-3.46		-10.75	0.00		-1.61	0.00		0.00
	5.19		3.68	14.43		17.80	19.41		25.22
	0.00		0.00	0.00		0.00	0.00		0.00
	5.19		3.68	14.43		17.80	19.41		25.22
	F R'	0.00 D -14.40 F 6.06 R' 16.99 H -3.46 5.19	0.00 D -14.40 F 6.06 R' 16.99 H -3.46 5.19 0.00	0.00       3.9         D -14.40       -14.40         F 6.06       6.06         R' 16.99       22.77         H -3.46       -10.75         5.19       3.68         0.00       0.00	0.00     3.975       D -14.40     -14.40 -14.40       F 6.06     6.06 6.06       R' 16.99     22.77 22.77       H -3.46     -10.75 0.00       5.19     3.68 14.43       0.00     0.00 0.00	0.00     3.975       D -14.40     -14.40 -14.40       F 6.06     6.06 6.06       R' 16.99     22.77 22.77       H -3.46     -10.75 0.00       5.19     3.68 14.43       0.00     0.00 0.00	0.00     3.975     7.       D -14.40     -14.40 -14.40     -14.40       F 6.06     6.06 6.06     6.06       R' 16.99     22.77 22.77     27.75       H -3.46     -10.75 0.00     -1.61       5.19     3.68 14.43     17.80       0.00     0.00 0.00     0.00	0.00       3.975       7.40         D -14.40       -14.40 -14.40       -14.40 -14.40         F 6.06       6.06 6.06       6.06 6.06         R' 16.99       22.77 22.77       27.75 27.75         H -3.46       -10.75 0.00       -1.61 0.00         5.19       3.68 14.43       17.80 19.41         0.00       0.00 0.00       0.00 0.00	港外端   前壁中心   後壁中心   (後壁中心   0.00   3.975   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40   7.40

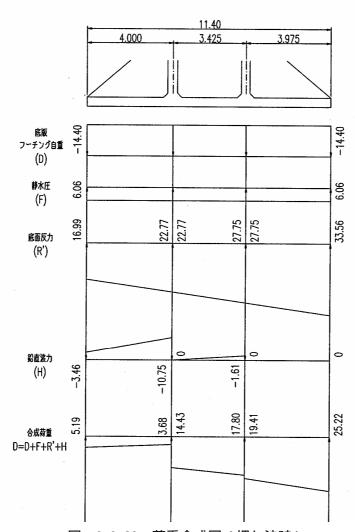



図 - 3.3.20 荷重合成図 (押し波時)

### b) 引き波時

基本設計の結果を用いる。

底面反力は、台形分布である。

R1 = 24.45 kN/m² (港外端) R2 = 13.34 kN/m² (港内端)

								<u> </u>	11/11
検討位置		港外端	前壁中心		後壁	中心		港内端	
支点~距離		0.00	3.9	975		7.	40		11.40
自重	D	-14.40	-14.40	-14.40		-14.40	-14.40		-14.40
静水圧	F	6.06	6.06	6.06		6.06	6.06		6.06
底面反力	R'	24.45	20.58	20.58		17.24	17.24		13.34
鉛直波力	Н	5.68	17.68	0.00		0.00	0.00		0.00
合成荷重		21.79	29.92	12.24		8.90	8.90		5.00
下向き荷重		0.00	0.00	0.00		0.00	0.00		0.00
上向き荷重		21.79	29.92	12.24		8.90	8.90		5.00

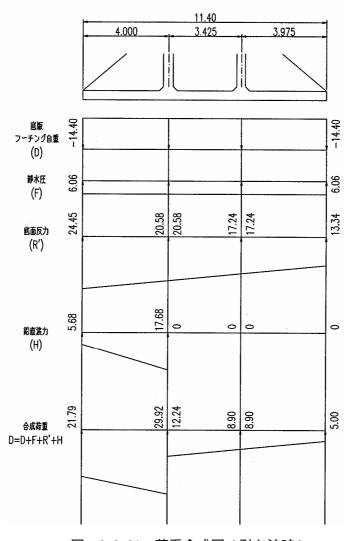



図 - 3.3.21 荷重合成図(引き波時)

### 3) H=2.5m

# a) 押し波時

基本設計の結果を用いる。

底面反力は、台形分布である。

R1= 13.43 kN/m² (港外端) R2= 34.72 kN/m² (港内端)

									<u> 구 년 : ド</u>	,
検討位置		港外端	港外端 前壁中心 後壁中		中心		港内端			
支点~距離		0.00		3.975		7.40			0.00	
自重	D	-14.40		-14.40	-14.40		-14.40	-14.40		-14.40
静水圧	F	6.06		6.06	6.06		6.06	6.06		6.06
底面反力	R'	13.43		20.85	20.85		27.25	27.25		34.72
鉛直波力	Н	-0.98		-6.41	0.00		-0.96	0.00		0.00
合成荷重		4.11		6.10	12.51		17.95	18.91		26.38
下向き荷重		0.00		0.00	0.00		0.00	0.00		0.00
上向き荷重		4.11		6.10	12.51		17.95	18.91		26.38

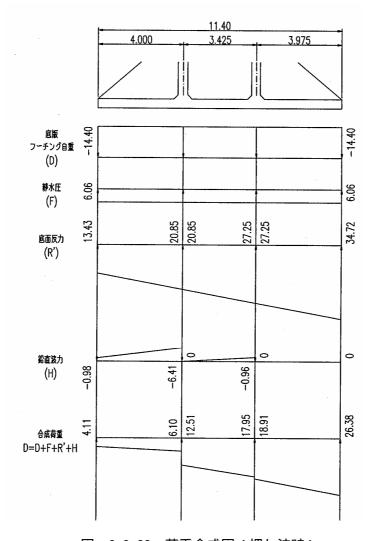



図 - 3.3.22 荷重合成図 (押し波時)

### b) 引き波時

# 基本設計の結果を用いる。

底面反力は、台形分布である。

R1= 25.69 kN/m² (港外端) R2= 14.99 kN/m² (港内端)

								<u>十四・1</u>	47 111
検討位置		港外端	前壁	中心	後壁中心		中心		港内端
支点 ~ 距離		0.00	3.9	975		7.	40		11.40
自重	D	-14.40	-14.40	-14.40		-14.40	-14.40		-14.40
静水圧	F	6.06	6.06	6.06		6.06	6.06		6.06
底面反力	R'	25.69	21.96	21.96		18.74	18.74		14.99
鉛直波力	Н	1.94	12.63	0.00		0.00	0.00		0.00
合成荷重		19.29	26.25	13.62		10.40	10.40		6.65
下向き荷重		0.00	0.00	0.00		0.00	0.00		0.00
上向き荷重		19.29	26.25	13.62		10.40	10.40		6.65

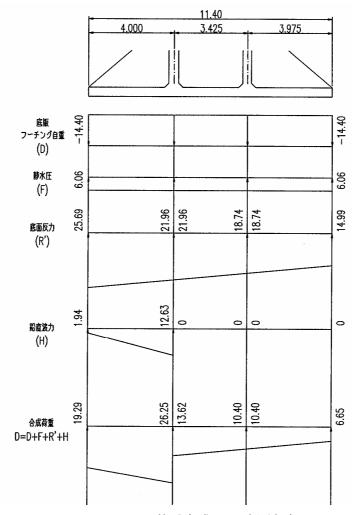



図 - 3.3.23 荷重合成図(引き波時)

# (6) バットレス

# 1) バットレスに対して垂直に作用する荷重(波圧)

	出現波数	(千回)	0.4	6.0	86.4	2992.4	951062.1
	設計波高	HD(m)	4.5	3.5	2.5	1.5	0.5
	設計周期	T(s)	3.8	3.7	3.4	2.9	1.6
押波時	0.8WoHD		36.36	28.28	20.20	-	-

# 2) バットレスの軸方向に対する設計

	単位(kN/m²)										
			下向き	-	-	-	-				
	+m   2mn±	中央部	上向き	31.95	0.81	8.00	117.85				
	押し波時	かり	下向き	-	-	-	-				
		端部	上向き	15.84	0.72	7.40	58.44				
		<b>☆</b>	下向き	-	-	-	-				
H=4.5m	리소하다	中央部	上向き	113.29	14.89	2.98	18.52				
Π=4.5III	引き波時	端部	下向き	-	-	-	-				
		から	上向き	56.18	13.23	2.76	9.19				
		中中郊	下向き	30.04	16.95	-	-				
	鉛直波力	中央部	上向き	100.01	24.20	33.20	100.25				
	最大時	端部	下向き	14.90	10.02	-	-				
		아마다	上向き	49.60	12.12	17.18	49.72				
		中中郊	下向き	-	-	-	-				
	押し波時	中央部	上向き	25.43	1.70	7.88	123.58				
	がい及时	端部	下向き	-	-	-	-				
		아마다	上向き	12.61	1.51	7.29	61.28				
		中央部	下向き	-	-	-	-				
H=3.5m	引き波時	中央部	上向き	106.77	13.26	3.48	24.50				
n=3.5m	りで 放明	端部	下向き	-	1	-	-				
		יום שע	上向き	52.95	11.78	3.22	12.15				
		中央部	下向き	14.80	8.35	1	-				
	鉛直波力	무	上向き	100.16	24.24	36.71	100.16				
	最大時	端部	下向き	7.34	4.93	-	-				
		יום שע	上向き	49.67	12.14	19.19	49.67				
		中央部	下向き	ı	ı	-	-				
	押し波時	다것마	上向き	20.14	2.70	7.71	129.26				
	1十 〇 //X Þ寸	端部	下向き	-	-	-	-				
		יום נווע	上向き	9.99	2.40	7.13	64.10				
		中央部	下向き	-	-	-	-				
H=3.5m	引き波時	1.Vm	上向き	94.52	11.64	4.08	32.59				
11-3.5	JIC IXIT	端部	下向き	-	-	-	-				
		비	上向き	46.87	10.34	3.78	16.16				
		中央部	下向き	-	-	-	-				
	鉛直波力	サス品	上向き	100.11	24.51	57.89	100.21				
	最大時	端部	下向き	-	-	-	-				
		็이다 때사	上向き	49.64	12.30	31.34	49.69				

#### 3.4 各部材の断面力の算定

#### 3.4.1 終局限界状態

前壁、後壁、側壁、隔壁および底版については、通常のケーソンと同様に技術基準の三辺固定 一辺自由版と四辺固定版を用いて、部材の断面力を算出するため省略する(「沿岸開発技術研究センター:港湾構造物設計事例集、平成11年参照)。ここでは、フーチングとバットレスについて記述する。

#### (1) フーチング

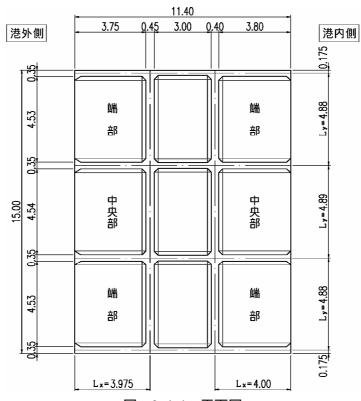



図 - 3.4.1 平面図

表 - 3.4.1 辺長比と使用曲げモーメント係数表

	部	材	L x (m)	L y (m)	$=\frac{Lx}{Ly}$	使用係数 表の	支承条件
	港外側	端部	3.975	4.88	0.81	0.75	三辺固定一辺自由版
フーチ	側	中央部	3.975	4.89	0.81	0.75	"
アング	港内側	端部	4.00	4.88	0.82	0.75	"
	側	中央部	4.00	4.89	0.82	0.75	II .

断面力の計算は中央部により行なう。端部は中央部に準ずるものとして計算は 省略する。

# 1) 底面反力による曲げモーメント

# a) 港外側フーチング

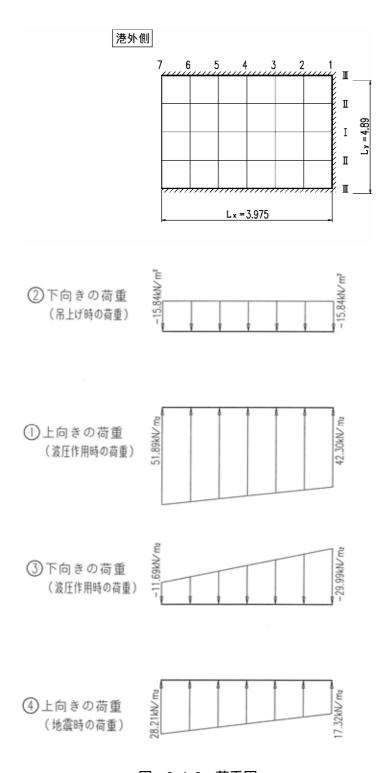



図 - 3.4.2 荷重図

# 上向き荷重による曲げモーメント(波圧作用時)

 $p_1 = 51.89 \text{kN/m}^2$   $p_2 = 42.30 \text{kN/m}^2$  (台形等分布荷重)

= 0.75 , Lx = 3.975m

P₁ = 42.30 - 51.89 = -9.59kN/m² (三角形分布荷重)

 $M \times = P \cdot L \times^{2} \times X = -9.59 \times 3.975^{2} \times X = -151.53 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -9.59 \times 3.975^2 \cdot Y = -151.53 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

P₂=51.89kN/m² (等分布荷重)

 $M \times = P \cdot L x^2 \cdot X = 51.89 \times 3.975^2 \cdot X = 819.89 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = 51.89 \times 3.975^2 \cdot Y = 819.89 \cdot Y \quad (kN \cdot m/m)$ 

#### 表 - 3.4.2 上向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

No.			Χ		М×		M x
	三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
	-151.53	819.89	-0.0519	-0.0990	7.86	-81.17	-73.31
	-151.53	819.89	-0.0067	-0.0258	1.02	-21.15	-20.13
	-151.53	819.89	0.0110	0.0080	-1.67	6.56	4.89
	-151.53	819.89	0.0137	0.0197	-2.08	16.15	14.07
	-151.53	819.89	0.0095	0.0198	-1.44	16.23	14.79
	-151.53	819.89	0.0038	0.0132	-0.58	10.82	10.24
	-151.53	819.89	0.0000	0.0000	0.00	0.00	0.00
	-151.53	819.89	-0.0348	-0.0602	5.27	-49.36	-44.09
	-151.53	819.89	-0.0030	-0.0145	0.45	-11.89	-11.44
	-151.53	819.89	0.0075	0.0049	-1.14	4.02	2.88
	-151.53	819.89	0.0080	0.0103	-1.21	8.44	7.23
	-151.53	819.89	0.0048	0.0088	-0.73	7.22	6.49
	-151.53	819.89	0.0013	0.0048	-0.20	3.94	3.74
	-151.53	819.89	0.0000	0.0000	0.00	0.00	0.00
	-151.53	819.89	0.0000	0.0000	0.00	0.00	0.00
	-151.53	819.89	-0.0024	-0.0035	0.36	-2.87	-2.51
	-151.53	819.89	-0.0053	-0.0101	0.80	-8.28	-7.48
	-151.53	819.89	-0.0066	-0.0156	1.00	-12.79	-11.79
	-151.53	819.89	-0.0065	-0.0195	0.98	-15.99	-15.01
	-151.53	819.89	-0.0058	-0.0227	0.88	-18.61	-17.73
	-151.53	819.89	0.0000	0.0000	0.00	0.00	0.00

(法線平行方向)

Ν	٥.	P1×Lx ²	P2×Lx ²	`	Y		У	Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-151.53	819.89	-0.0087	-0.0165	1.32	-13.53	-12.21
		-151.53	819.89	-0.0058	-0.0100	0.88	-8.20	-7.32
		-151.53	819.89	0.0000	0.0000	0.00	0.00	0.00
		-151.53	819.89	0.0020	0.0032	-0.30	2.62	2.32
		-151.53	819.89	0.0016	0.0009	-0.24	0.74	0.50
		-151.53	819.89	-0.0143	-0.0209	2.17	-17.14	-14.97
		-151.53	819.89	0.0105	0.0236	-1.59	19.35	17.76
		-151.53	819.89	0.0059	0.0093	-0.89	7.62	6.73
		-151.53	819.89	-0.0317	-0.0606	4.80	-49.69	-44.89
		-151.53	819.89	0.0155	0.0406	-2.35	33.29	30.94
		-151.53	819.89	0.0070	0.0144	-1.06	11.81	10.75
		-151.53	819.89	-0.0394	-0.0939	5.97	-76.99	-71.02
		-151.53	819.89	0.0173	0.0531	-2.62	43.54	40.92
		-151.53	819.89	0.0061	0.0173	-0.92	14.18	13.26
		-151.53	819.89	-0.0389	-0.1172	5.89	-96.09	-90.20
		-151.53	819.89	0.0174	0.0619	-2.64	50.75	48.11
		-151.53	819.89	0.0047	0.0189	-0.71	15.50	14.79
		-151.53	819.89	-0.0347	-0.1361	5.26	-111.59	-106.33
		-151.53	819.89	0.0175	0.0688	-2.65	56.41	53.76
		-151.53	819.89	0.0037	0.0205	-0.56	16.81	16.25
		-151.53	819.89	-0.0260	-0.1477	3.94	-121.10	-117.16

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

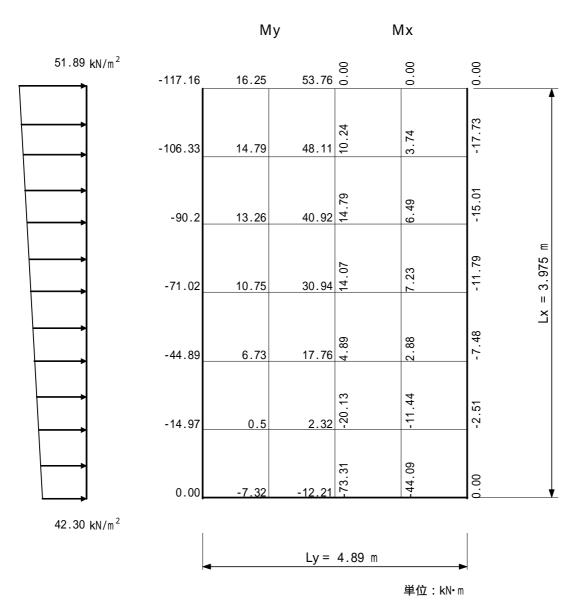



図 - 3.4.3 上向き荷重による曲げモーメント(波圧作用時)

### 下向き荷重による曲げモーメント(吊上げ時)

P = - 15.84kN/m² (等分布荷重)

= 0.75 , Lx = 3.975m

 $M \times = P \cdot L x^2 \cdot X = -15.84 \times 3.975^2 \cdot X = -250.28 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -15.84 \times 3.975^2 \cdot Y = -250.28 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

### 表 - 3.4.3 下向き荷重による曲げモーメント(吊上げ時)

#### (法線直角方向)

#### (法線平行方向)

Mx 24.78
6.46
-2.00
-4.93
-4.96
-3.30
0.00
15.07
3.63
-1.23
-2.58
-2.20
-1.20
0.00
0.00
0.88
2.53
3.90
4.88
5.68
0.00

		(141/3)	
No.	$P \times L x^2$	Υ	Му
	-250.28	-0.0165	4.13
	-250.28	-0.0100	2.50
	-250.28	0.0000	0.00
	-250.28	0.0032	-0.80
	-250.28	0.0009	-0.23
	-250.28	-0.0209	5.23
	-250.28	0.0236	-5.91
	-250.28	0.0093	-2.33
	-250.28	-0.0606	15.17
	-250.28	0.0406	-10.16
	-250.28	0.0144	-3.60
	-250.28	-0.0939	23.50
	-250.28	0.0531	-13.29
	-250.28	0.0173	-4.33
	-250.28	-0.1172	29.33
	-250.28	0.0619	-15.49
	-250.28	0.0189	-4.73
	-250.28	-0.1361	34.06
	-250.28	0.0688	-17.22
	-250.28	0.0205	-5.13
	-250.28	-0.1477	36.97

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

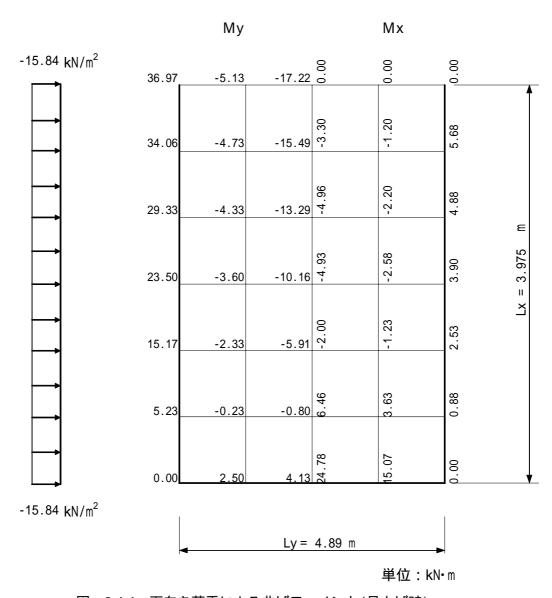



図 - 3.4.4 下向き荷重による曲げモーメント(吊上げ時)

#### 下向き荷重による曲げモーメント(波圧作用時)

 $p_1$  = -11.69kN/m²  $p_2$  = -29.99kN/m² (台形等分布荷重) = 0.75 , L x = 3.975m

P₁ = -29.66 + 11.69 = -18.30kN/m² (三角形分布荷重)

 $M \times = P \cdot L x^2 \cdot X = -18.30 \times 3.975^2 \cdot X = -289.15 \cdot X \text{ (kN} \cdot \text{m/m)}$ 

 $My = P \cdot Lx^{2} \cdot Y = -18.30 \times 3.975^{2} \cdot Y = -289.15 \cdot Y \quad (kN \cdot m/m)$ 

P₂ = -11.69kN/m² (等分布荷重)

 $M \times = P \cdot L x^2 \cdot X = -11.69 \times 3.975^2 \cdot X = -184.71 \cdot X (kN \cdot m/m)$ 

 $M y = P \cdot L x^{2} \cdot Y = -11.69 \times 3.975^{2} \cdot Y = -184.71 \cdot Y (kN \cdot m/m)$ 

#### 表 - 3.4.4 下向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

No.		$P1 \times I \times^2$	P2×Lx ²	Х		M X		<u>внили)</u> М х
1	´`	三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-289.15	-184.71	-0.0519	-0.0990	15.01	18.29	33.30
		-289.15	-184.71	-0.0067	-0.0258	1.94	4.77	6.71
		-289.15	-184.71	0.0110	0.0080	-3.18	-1.48	-4.66
		-289.15	-184.71	0.0137	0.0197	-3.96	-3.64	-7.60
		-289.15	-184.71	0.0095	0.0198	-2.75	-3.66	-6.41
		-289.15	-184.71	0.0038	0.0132	-1.10	-2.44	-3.54
		-289.15	-184.71	0.0000	0.0000	0.00	0.00	0.00
		-289.15	-184.71	-0.0348	-0.0602	10.06	11.12	21.18
		-289.15	-184.71	-0.0030	-0.0145	0.87	2.68	3.55
		-289.15	-184.71	0.0075	0.0049	-2.17	-0.91	-3.08
		-289.15	-184.71	0.0080	0.0103	-2.31	-1.90	-4.21
		-289.15	-184.71	0.0048	0.0088	-1.39	-1.63	-3.02
		-289.15	-184.71	0.0013	0.0048	-0.38	-0.89	-1.27
		-289.15	-184.71	0.0000	0.0000	0.00	0.00	0.00
		-289.15	-184.71	0.0000	0.0000	0.00	0.00	0.00
		-289.15	-184.71	-0.0024	-0.0035	0.69	0.65	1.34
		-289.15	-184.71	-0.0053	-0.0101	1.53	1.87	3.40
		-289.15	-184.71	-0.0066	-0.0156	1.91	2.88	4.79
		-289.15	-184.71	-0.0065	-0.0195	1.88	3.60	5.48
		-289.15	-184.71	-0.0058	-0.0227	1.68	4.19	5.87
		-289.15	-184.71	0.0000	0.0000	0.00	0.00	0.00

(法線平行方向)

Ν	٥.	$P1 \times L x^2$	$P2 \times L x^2$	`	1	М		Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-289.15	-184.71	-0.0087	-0.0165	2.52	3.05	5.57
		-289.15	-184.71	-0.0058	-0.0100	1.68	1.85	3.53
		-289.15	-184.71	0.0000	0.0000	0.00	0.00	0.00
		-289.15	-184.71	0.0020	0.0032	-0.58	-0.59	-1.17
		-289.15	-184.71	0.0016	0.0009	-0.46	-0.17	-0.63
		-289.15	-184.71	-0.0143	-0.0209	4.13	3.86	7.99
		-289.15	-184.71	0.0105	0.0236	-3.04	-4.36	-7.40
		-289.15	-184.71	0.0059	0.0093	-1.71	-1.72	-3.43
		-289.15	-184.71	-0.0317	-0.0606	9.17	11.19	20.36
		-289.15	-184.71	0.0155	0.0406	-4.48	-7.50	-11.98
		-289.15	-184.71	0.0070	0.0144	-2.02	-2.66	-4.68
		-289.15	-184.71	-0.0394	-0.0939	11.39	17.34	28.73
		-289.15	-184.71	0.0173	0.0531	-5.00	-9.81	-14.81
		-289.15	-184.71	0.0061	0.0173	-1.76	-3.20	-4.96
		-289.15	-184.71	-0.0389	-0.1172	11.25	21.65	32.90
		-289.15	-184.71	0.0174	0.0619	-5.03	-11.43	-16.46
		-289.15	-184.71	0.0047	0.0189	-1.36	-3.49	-4.85
		-289.15	-184.71	-0.0347	-0.1361	10.03	25.14	35.17
		-289.15	-184.71	0.0175	0.0688	-5.06	-12.71	-17.77
		-289.15	-184.71	0.0037	0.0205	-1.07	-3.79	-4.86
		-289.15	-184.71	-0.0260	-0.1477	7.52	27.28	34.80

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75



図 - 3.4.5 下向き荷重による曲げモーメント(波圧作用時)

## 上向き荷重による曲げモーメント(地震時)

p₁ = 28.21kN/m² p₂ = 17.32kN/m² (台形等分布荷重)

= 0.75 , Lx = 3.975m

P₁=17.32 - 28.21 = -10.89kN/m² (三角形分布荷重)

 $M \times = P \cdot L \times^{2} \times X = -10.89 \times 3.975^{2} \times X = -172.07 \cdot X \text{ (kN· m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = -10.89 \times 3.975^2 \cdot Y = -172.07 \cdot Y \text{ (kN \cdot m/m)}$ 

P₂=28.21kN/m² (等分布荷重)

 $M \times = P \cdot L x^2 \cdot X = 28.21 \times 3.975^2 \cdot X = 445.74 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = 28.21 \times 3.975^2 \cdot Y = 445.74 \cdot Y \quad (kN \cdot m/m)$ 

## 表 - 3.4.5 上向き荷重による曲げモーメント(地震時)

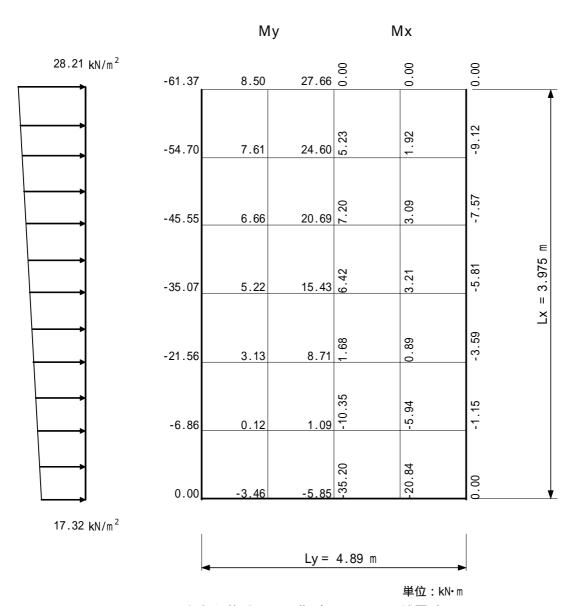
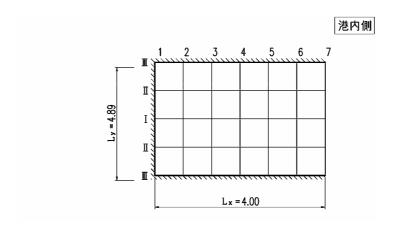
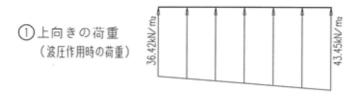
(法線直角方向)

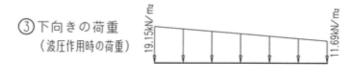
						(仏湫旦用刀凹)					
No	٥.	$P1 \times L x^2$	$P2 \times L x^2$	)	<	M	Χ	Мх			
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)			
		-172.07	445.74	-0.0519	-0.0990	8.93	-44.13	-35.20			
		-172.07	445.74	-0.0067	-0.0258	1.15	-11.50	-10.35			
		-172.07	445.74	0.0110	0.0080	-1.89	3.57	1.68			
		-172.07	445.74	0.0137	0.0197	-2.36	8.78	6.42			
		-172.07	445.74	0.0095	0.0198	-1.63	8.83	7.20			
		-172.07	445.74	0.0038	0.0132	-0.65	5.88	5.23			
		-172.07	445.74	0.0000	0.0000	0.00	0.00	0.00			
		-172.07	-172.07 445.74		-0.0602	5.99	-26.83	-20.84			
		-172.07	445.74	-0.0030	-0.0145	0.52	-6.46	-5.94			
		-172.07	445.74	0.0075	0.0049	-1.29	2.18	0.89			
		-172.07	445.74	0.0080	0.0103	-1.38	4.59	3.21			
		-172.07	445.74	0.0048	0.0088	-0.83	3.92	3.09			
		-172.07	445.74	0.0013	0.0048	-0.22	2.14	1.92			
		-172.07	445.74	0.0000	0.0000	0.00	0.00	0.00			
		-172.07	445.74	0.0000	0.0000	0.00	0.00	0.00			
		-172.07	445.74	-0.0024	-0.0035	0.41	-1.56	-1.15			
		-172.07	445.74	-0.0053	-0.0101	0.91	-4.50	-3.59			
		-172.07	445.74	-0.0066	-0.0156	1.14	-6.95	-5.81			
		-172.07	445.74	-0.0065	-0.0195	1.12	-8.69	-7.57			
		-172.07	445.74	-0.0058	-0.0227	1.00	-10.12	-9.12			
		-172.07	445.74	0.0000	0.0000	0.00	0.00	0.00			

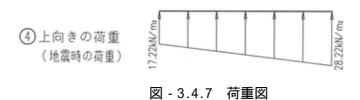
Ν	٥.	$P1 \times L x^2$		•	1	М		Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-172.07	445.74	-0.0087	-0.0165	1.50	-7.35	-5.85
		-172.07	445.74	-0.0058	-0.0100	1.00	-4.46	-3.46
		-172.07	445.74	0.0000	0.0000	0.00	0.00	0.00
		-172.07	445.74	0.0020	0.0032	-0.34	1.43	1.09
		-172.07	445.74	0.0016	0.0009	-0.28	0.40	0.12
		-172.07	445.74	-0.0143	-0.0209	2.46	-9.32	-6.86
		-172.07	445.74	0.0105	0.0236	-1.81	10.52	8.71
		-172.07	445.74	0.0059	0.0093	-1.02	4.15	3.13
		-172.07	445.74	-0.0317	-0.0606	5.45	-27.01	-21.56
		-172.07	445.74	0.0155	0.0406	-2.67	18.10	15.43
		-172.07	445.74	0.0070	0.0144	-1.20	6.42	5.22
		-172.07	445.74	-0.0394	-0.0939	6.78	-41.85	-35.07
		-172.07	445.74	0.0173	0.0531	-2.98	23.67	20.69
		-172.07	445.74	0.0061	0.0173	-1.05	7.71	6.66
		-172.07	445.74	-0.0389	-0.1172	6.69	-52.24	-45.55
		-172.07	445.74	0.0174	0.0619	-2.99	27.59	24.60
		-172.07	445.74	0.0047	0.0189	-0.81	8.42	7.61
		-172.07	445.74	-0.0347	-0.1361	5.97	-60.67	-54.70
		-172.07	445.74	0.0175	0.0688	-3.01	30.67	27.66
		-172.07	445.74	0.0037	0.0205	-0.64	9.14	8.50
		-172.07	445.74	-0.0260	-0.1477	4.47	-65.84	-61.37

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75



図 - 3.4.6 上向き荷重による曲げモーメント(地震時)


# b) 港内側フーチング











## 上向き荷重による曲げモーメント(波圧作用時)

p₁ = 43.45kN/m² p₂ = 36.42kN/m² (台形等分布荷重)

= 0.75 , Lx = 4.00m

P₁=36.42-43.45=-7.03kN/m² (三角形分布荷重)

 $M \times = P \cdot L x^2 \cdot X = -7.03 \times 4.00^2 \cdot X = -112.48 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -7.03 \times 4.00^2 \cdot Y = -112.48 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

P₂ = 43.45kN/m² (等分布荷重)

 $M \times = P \cdot L \times^{2} \times X = 43.45 \times 4.00^{2} \times X = 695.20 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = 43.45 \times 4.00^2 \cdot Y = 695.20 \cdot Y \quad (kN \cdot m/m)$ 

### 表 - 3.4.6 上向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

No.	P1×Lx ²	P2×Lx ²	)	X	М	Х	M x
	三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
	-112.48	695.20	-0.0519	-0.0990	5.84	-68.82	-62.98
	-112.48	695.20	-0.0067	-0.0258	0.75	-17.94	-17.19
	-112.48	695.20	0.0110 0.0080		-1.24	5.56	4.32
	-112.48	695.20	0.0137	0.0197	-1.54	13.70	12.16
	-112.48	695.20	0.0095	0.0198	-1.07	13.76	12.69
	-112.48	695.20	0.0038	0.0132	-0.43	9.18	8.75
	-112.48	695.20	0.0000	0.0000	0.00	0.00	0.00
	-112.48	695.20	-0.0348	-0.0602	3.91	-41.85	-37.94
	-112.48	695.20	-0.0030	-0.0145	0.34	-10.08	-9.74
	-112.48	695.20	0.0075	0.0049	-0.84	3.41	2.57
	-112.48	695.20	0.0080	0.0103	-0.90	7.16	6.26
	-112.48	695.20	0.0048	0.0088	-0.54	6.12	5.58
	-112.48	695.20	0.0013	0.0048	-0.15	3.34	3.19
	-112.48	695.20	0.0000	0.0000	0.00	0.00	0.00
	-112.48	695.20	0.0000	0.0000	0.00	0.00	0.00
	-112.48	695.20	-0.0024	-0.0035	0.27	-2.43	-2.16
	-112.48	695.20	-0.0053	-0.0101	0.60	-7.02	-6.42
	-112.48	695.20	-0.0066	-0.0156	0.74	-10.85	-10.11
	-112.48	695.20	-0.0065	-0.0195	0.73	-13.56	-12.83
	-112.48	695.20	-0.0058	-0.0227	0.65	-15.78	-15.13
	-112.48	695.20	0.0000	0.0000	0.00	0.00	0.00

No	٥.	$P1 \times L x^2$	$P2 \times L x^2$		<b>′</b>	М	У	Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN•m)
		-112.48	695.20	-0.0087	-0.0165	0.98	-11.47	-10.49
		-112.48	695.20	-0.0058	-0.0100	0.65	-6.95	-6.30
		-112.48	695.20	0.0000	0.0000	0.00	0.00	0.00
		-112.48	695.20	0.0020	0.0032	-0.22	2.22	2.00
		-112.48	695.20	0.0016	0.0009	-0.18	0.63	0.45
		-112.48	695.20	-0.0143	-0.0209	1.61	-14.53	-12.92
		-112.48	695.20	0.0105	0.0236	-1.18	16.41	15.23
		-112.48	695.20	0.0059	0.0093	-0.66	6.47	5.81
		-112.48	695.20	-0.0317	-0.0606	3.57	-42.13	-38.56
		-112.48	695.20	0.0155	0.0406	-1.74	28.23	26.49
		-112.48	695.20	0.0070	0.0144	-0.79	10.01	9.22
		-112.48	695.20	-0.0394	-0.0939	4.43	-65.28	-60.85
		-112.48	695.20	0.0173	0.0531	-1.95	36.92	34.97
		-112.48	695.20	0.0061	0.0173	-0.69	12.03	11.34
		-112.48	695.20	-0.0389	-0.1172	4.38	-81.48	-77.10
		-112.48	695.20	0.0174	0.0619	-1.96	43.03	41.07
		-112.48	695.20	0.0047	0.0189	-0.53	13.14	12.61
		-112.48	695.20	-0.0347	-0.1361	3.90	-94.62	-90.72
		-112.48	695.20	0.0175	0.0688	-1.97	47.83	45.86
		-112.48	695.20	0.0037	0.0205	-0.42	14.25	13.83
		-112.48	695.20	-0.0260	-0.1477	2.92	-102.68	-99.76

## 解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

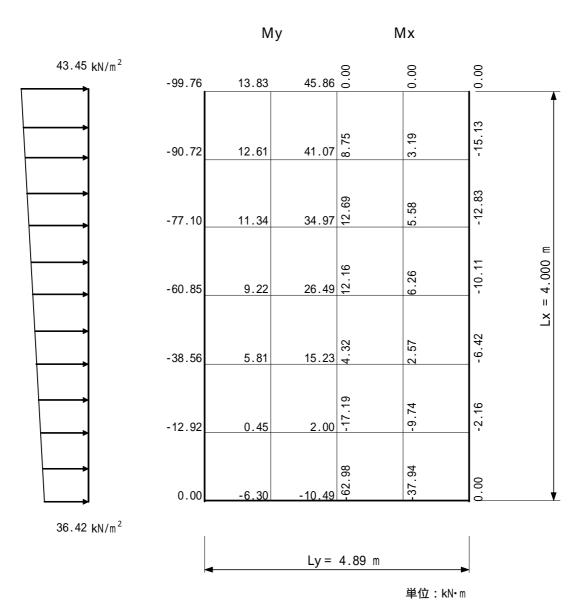



図 - 3.4.8 上向き荷重による曲げモーメント(波圧作用時)

## 下向き荷重による曲げモーメント(吊上げ時)

P = - 15.84kN/m² (等分布荷重)

= 0.75 , Lx = 4.00m

 $M \times = P \cdot L \times^{2} \times X = -15.84 \times 4.00^{2} \times X = -253.44 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -15.84 \times 4.00^2 \cdot Y = -253.44 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

表 - 3.4.7 下向き荷重による曲げモーメント(吊上げ時)

(法線直角方向)

		(/4////	<u> 보써기기기</u>
No.	$P \times L x^2$	Χ	Mx
	-253.44	-0.0990	25.09
	-253.44	-0.0258	6.54
	-253.44	0.0080	-2.03
	-253.44	0.0197	-4.99
	-253.44	0.0198	-5.02
	-253.44	0.0132	-3.35
	-253.44	0.0000	0.00
	-253.44	-0.0602	15.26
	-253.44	-0.0145	3.67
	-253.44	0.0049	-1.24
	-253.44	0.0103	-2.61
	-253.44	0.0088	-2.23
	-253.44	0.0048	-1.22
	-253.44	0.0000	0.00
	-253.44	0.0000	0.00
	-253.44	-0.0035	0.89
	-253.44	-0.0101	2.56
	-253.44	-0.0156	3.95
	-253.44	-0.0195	4.94
	-253.44	-0.0227	5.75
	-253.44	0.0000	0.00
		·	

		(7年/8)	1 13/313/
No.	$P \times L x^2$	Υ	Му
	-253.44	-0.0165	4.18
	-253.44	-0.0100	2.53
	-253.44	0.0000	0.00
	-253.44	0.0032	-0.81
	-253.44	0.0009	-0.23
	-253.44	-0.0209	5.30
	-253.44	0.0236	-5.98
	-253.44	0.0093	-2.36
	-253.44	-0.0606	15.36
	-253.44	0.0406	-10.29
	-253.44	0.0144	-3.65
	-253.44	-0.0939	23.80
	-253.44	0.0531	-13.46
	-253.44	0.0173	-4.38
	-253.44	-0.1172	29.70
	-253.44	0.0619	-15.69
	-253.44	0.0189	-4.79
	-253.44	-0.1361	34.49
	-253.44	0.0688	-17.44
	-253.44	0.0205	-5.20
	-253.44	-0.1477	37.43

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

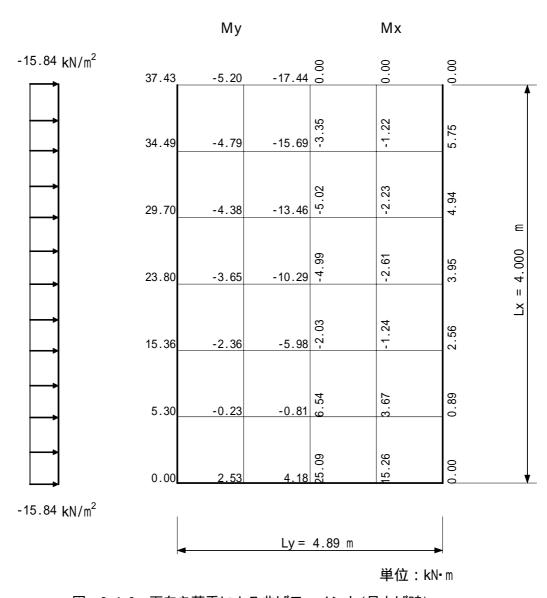



図 - 3.4.9 下向き荷重による曲げモーメント(吊上げ時)

## 下向き荷重による曲げモーメント(波圧作用時)

 $p_1 = -19.15 \text{kN/m}^2$   $p_2 = -11.69 \text{kN/m}^2$  (台形等分布荷重) = 0.75 , L x = 4.00 m

P₁ = -19.15 + 11.69 = -7.46kN/m² (三角形分布荷重)

 $M \times = P \cdot L \times^{2} \times X = -7.46 \times 4.00^{2} \times X = -119.36 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -7.46 \times 4.00^2 \cdot Y = -119.36 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

P₂ = -11.69kN/m² (等分布荷重)

 $M \times = P \cdot L \times^{2} \times X = -11.69 \times 4.00^{2} \times X = -187.04 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = -11.69 \times 4.00^2 \cdot Y = -187.04 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

### 表 - 3.4.8 下向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

No.	P1×Lx ²	P2×Lx ²	)	Χ	М	Х	M x
	三角形	等分布	三角形	等分布	三角形	等分布	(kN•m)
	-119.36	-187.04	-0.0519	-0.0990	6.19	18.52	24.71
	-119.36	-187.04	-0.0067	-0.0258	0.80	4.83	5.63
	-119.36	-187.04	0.0110	0.0080	-1.31	-1.50	-2.81
	-119.36	-187.04	0.0137	0.0197	-1.64	-3.68	-5.32
	-119.36	-187.04	0.0095	0.0198	-1.13	-3.70	-4.83
	-119.36	-187.04	0.0038	0.0132	-0.45	-2.47	-2.92
	-119.36	-187.04	0.0000	0.0000	0.00	0.00	0.00
	-119.36	-187.04	-0.0348	-0.0602	4.15	11.26	15.41
	-119.36	-187.04	-0.0030	-0.0145	0.36	2.71	3.07
	-119.36	-187.04	0.0075	0.0049	-0.90	-0.92	-1.82
	-119.36	-187.04	0.0080	0.0103	-0.95	-1.93	-2.88
	-119.36	0.36 -187.04 0.0	0.0048	0.0088	-0.57	-1.65	-2.22
	-119.36	-187.04	0.0013	0.0048	-0.16	-0.90	-1.06
	-119.36	-187.04	0.0000	0.0000	0.00	0.00	0.00
	-119.36	-187.04	0.0000	0.0000	0.00	0.00	0.00
	-119.36	-187.04	-0.0024	-0.0035	0.29	0.65	0.94
	-119.36	-187.04	-0.0053	-0.0101	0.63	1.89	2.52
	-119.36	-187.04	-0.0066	-0.0156	0.79	2.92	3.71
	-119.36	-187.04	-0.0065	-0.0195	0.78	3.65	4.43
	-119.36	-187.04	-0.0058	-0.0227	0.69	4.25	4.94
	-119.36	-187.04	0.0000	0.0000	0.00	0.00	0.00

No	٠.	$P1 \times L x^2$	$P2 \times L x^2$		Y	М		Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-119.36	-187.04	-0.0087	-0.0165	1.04	3.09	4.13
		-119.36	-187.04	-0.0058	-0.0100	0.69	1.87	2.56
		-119.36	-187.04	0.0000	0.0000	0.00	0.00	0.00
		-119.36	-187.04	0.0020	0.0032	-0.24	-0.60	-0.84
		-119.36	-187.04	0.0016	0.0009	-0.19	-0.17	-0.36
		-119.36	-187.04	-0.0143	-0.0209	1.71	3.91	5.62
		-119.36	-187.04	0.0105	0.0236	-1.25	-4.41	-5.66
		-119.36	-187.04	0.0059	0.0093	-0.70	-1.74	-2.44
		-119.36	-187.04	-0.0317	-0.0606	3.78	11.33	15.11
		-119.36	-187.04	0.0155	0.0406	-1.85	-7.59	-9.44
		-119.36	-187.04	0.0070	0.0144	-0.84	-2.69	-3.53
		-119.36	-187.04	-0.0394	-0.0939	4.70	17.56	22.26
		-119.36	-187.04	0.0173	0.0531	-2.06	-9.93	-11.99
		-119.36	-187.04	0.0061	0.0173	-0.73	-3.24	-3.97
		-119.36	-187.04	-0.0389	-0.1172	4.64	21.92	26.56
		-119.36	-187.04	0.0174	0.0619	-2.08	-11.58	-13.66
		-119.36	-187.04	0.0047	0.0189	-0.56	-3.54	-4.10
		-119.36	-187.04	-0.0347	-0.1361	4.14	25.46	29.60
		-119.36	-187.04	0.0175	0.0688	-2.09	-12.87	-14.96
		-119.36	-187.04	0.0037	0.0205	-0.44	-3.83	-4.27
		-119.36	-187.04	-0.0260	-0.1477	3.10	27.63	30.73

## 解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

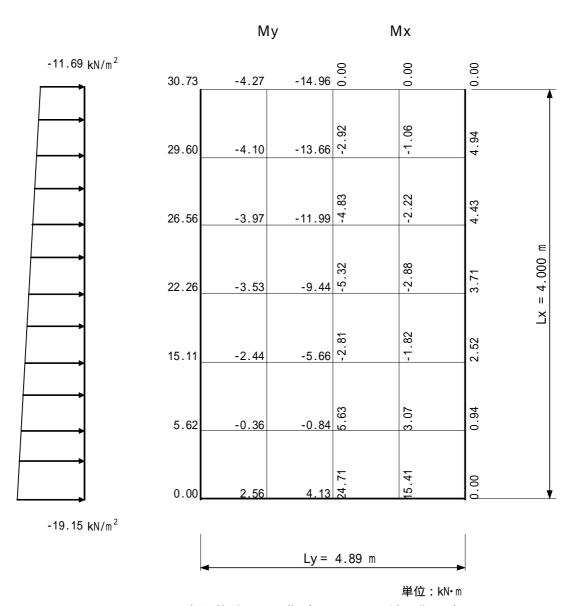



図 - 3.4.10 下向き荷重による曲げモーメント(波圧作用時)

## 上向き荷重による曲げモーメント(地震時)

 $p_1 = 28.22 kN/m^2$   $p_2 = 17.22 kN/m^2$  (台形等分布荷重)

= 0.75 , Lx = 4.00m

P₁=17.22 - 28.22 = -11.00kN/m² (三角形分布荷重)

 $M \times = P \cdot L x^2 \cdot X = -11.00 \times 4.00^2 \cdot X = -176.00 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = -11.00 \times 4.00^2 \cdot Y = -176.00 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

P₂ = 28.22kN/m² (等分布荷重)

 $M \times = P \cdot L \times^{2} \times X = 28.22 \times 4.00^{2} \times X = 451.52 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = 28.22 \times 4.00^2 \cdot Y = 451.52 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

### 表 - 3.4.9 上向き荷重による曲げモーメント(地震時)

(法線直角方向)

Ν	^	P1×L x ²	P2×Lx ²	,	Χ	М	X	M X
' `	٥.	三角形	等分布		等分布	三角形	 等分布	(kN·m)
		-176.00	451.52	-0.0519	-0.0990	9.13	-44.70	-35.57
		-176.00	451.52	-0.0067	-0.0258	1.18	-11.65	-10.47
		-176.00	451.52	0.0110	0.0080	-1.94	3.61	1.67
		-176.00	451.52	0.0137	0.0197	-2.41	8.89	6.48
		-176.00	451.52	0.0095	0.0198	-1.67	8.94	7.27
		-176.00	451.52	0.0038	0.0132	-0.67	5.96	5.29
		-176.00	451.52	0.0000	0.0000	0.00	0.00	0.00
		-176.00	451.52	-0.0348	-0.0602	6.12	-27.18	-21.06
		-176.00	451.52	-0.0030	-0.0145	0.53	-6.55	-6.02
		-176.00	451.52	0.0075	0.0049	-1.32	2.21	0.89
		-176.00	451.52	0.0080	0.0103	-1.41	4.65	3.24
		-176.00	451.52 0.00	0.0048	0.0088	-0.84	3.97	3.13
		-176.00	451.52	0.0013	0.0048	-0.23	2.17	1.94
		-176.00	451.52	0.0000	0.0000	0.00	0.00	0.00
		-176.00	451.52	0.0000	0.0000	0.00	0.00	0.00
		-176.00	451.52	-0.0024	-0.0035	0.42	-1.58	-1.16
		-176.00	451.52	-0.0053	-0.0101	0.93	-4.56	-3.63
		-176.00	451.52	-0.0066	-0.0156	1.16	-7.04	-5.88
		-176.00	451.52	-0.0065	-0.0195	1.14	-8.80	-7.66
		-176.00	451.52	-0.0058	-0.0227	1.02	-10.25	-9.23
		-176.00	451.52	0.0000	0.0000	0.00	0.00	0.00

No	٠.	$P1 \times L x^2$	$P2 \times L x^2$		Y	М		Му
		三角形	等分布	三角形	等分布	三角形	等分布	(kN·m)
		-176.00	451.52	-0.0087	-0.0165	1.53	-7.45	-5.92
		-176.00	451.52	-0.0058	-0.0100	1.02	-4.52	-3.50
		-176.00	451.52	0.0000	0.0000	0.00	0.00	0.00
		-176.00	451.52	0.0020	0.0032	-0.35	1.44	1.09
		-176.00	451.52	0.0016	0.0009	-0.28	0.41	0.13
		-176.00	451.52	-0.0143	-0.0209	2.52	-9.44	-6.92
		-176.00	451.52	0.0105	0.0236	-1.85	10.66	8.81
		-176.00	451.52	0.0059	0.0093	-1.04	4.20	3.16
		-176.00	451.52	-0.0317	-0.0606	5.58	-27.36	-21.78
		-176.00	451.52	0.0155	0.0406	-2.73	18.33	15.60
		-176.00	451.52	0.0070	0.0144	-1.23	6.50	5.27
		-176.00	451.52	-0.0394	-0.0939	6.93	-42.40	-35.47
		-176.00	451.52	0.0173	0.0531	-3.04	23.98	20.94
		-176.00	451.52	0.0061	0.0173	-1.07	7.81	6.74
		-176.00	451.52	-0.0389	-0.1172	6.85	-52.92	-46.07
		-176.00	451.52	0.0174	0.0619	-3.06	27.95	24.89
		-176.00	451.52	0.0047	0.0189	-0.83	8.53	7.70
		-176.00	451.52	-0.0347	-0.1361	6.11	-61.45	-55.34
		-176.00	451.52	0.0175	0.0688	-3.08	31.06	27.98
		-176.00	451.52	0.0037	0.0205	-0.65	9.26	8.61
		-176.00	451.52	-0.0260	-0.1477	4.58	-66.69	-62.11

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

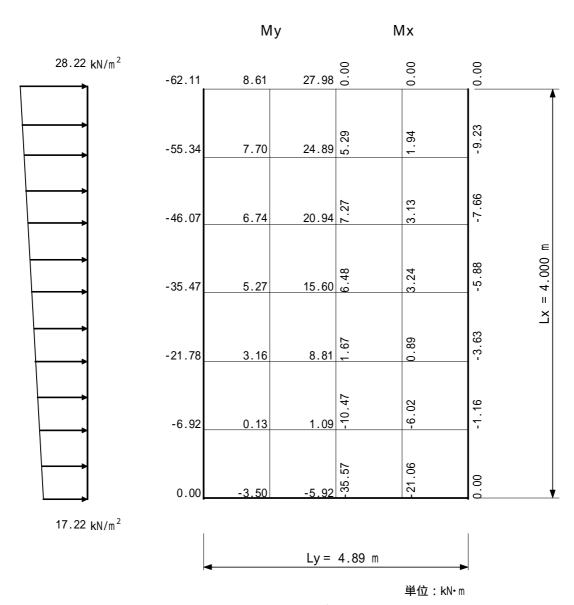


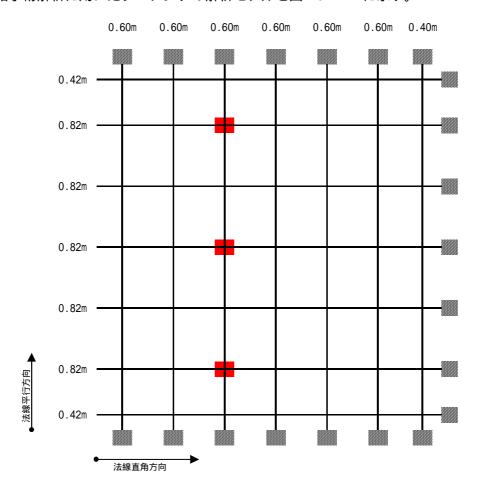

図 - 3.4.11 上向き荷重による曲げモーメント(地震時)

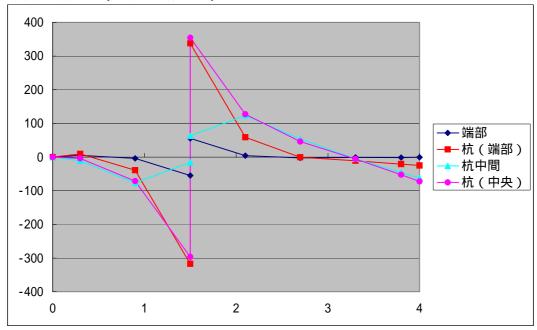
### 2) 杭頭モーメント及び軸力による曲げモーメント

杭頭モーメント及び軸力による曲げモーメントについては、格子桁解析により算出する。 算出された杭頭モーメント及び軸力による曲げモーメントを、底面反力による曲げモーメ ントの格子点番号(版の計算図表の格子点番号)に合わせ、以下のように想定する。

### a) 解析モデル

格子桁解析に用いたフーチングの解析モデルを図 - 3.4.12 に示す。





図 - 3.4.12 解析モデル図 (: 杭の位置)

### b) 港外側フーチング

格子桁解析結果(杭頭モーメント)

格子桁解析結果を完成時の押し波時のみ示す(図-3.4.13、3.4.14参照)。

#### 法線鉛直方向鉄筋 (法線鉛直方向断面)



#### 法線鉛直方向鉄筋 (法線平行方向断面)

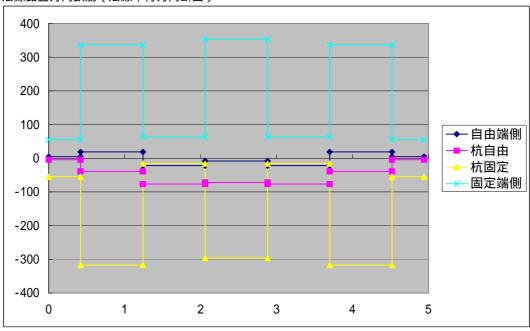
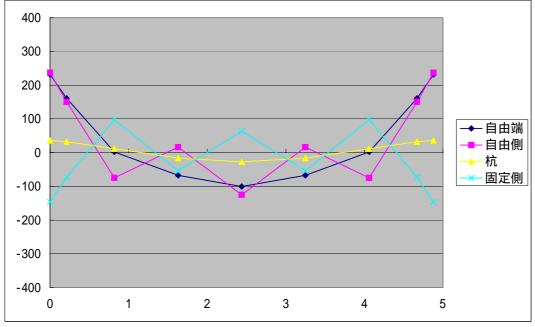
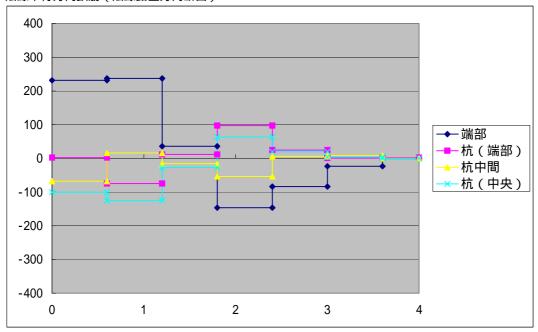



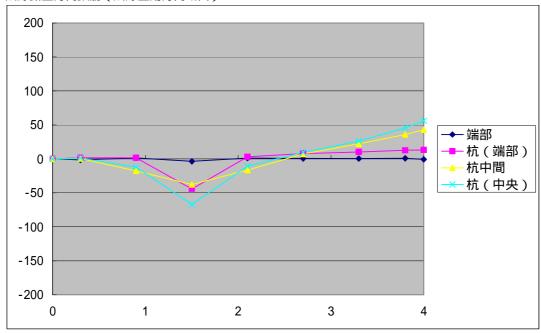

図 - 3.4.13 格子桁解析結果(その1)

法線平行方向鉄筋 (法線平行方向断面)



法線平行方向鉄筋 (法線鉛直方向断面)





図 - 3.4.14 格子桁解析結果(その2)

# 格子桁解析のまとめ(杭頭モーメント)

·法線直	角方向	<b> 鉄筋(上側鉄筋)</b>				·法線平行方	方向鉄角	筋(上側鉄筋)			
	0	1	2 3	. 4			0	1	2	3 4	
	0.45	38.30	55.04	1.12							
	1.25	221.31	354.30	50.46		1	.25	236.84	102.15	16.47	
	2.05	53.48	123.24	43.94							
自由端	2.85	221.31	354.30	50.46	固 定 端	自由端		87.62	63.64	8.50	固 定 端
	3.65	53.48	123.24	43.94		3	.65				
	4.45	221.31	354.30	50.46				236.84	102.15	16.47	
	4.90	38.30	55.04	1.12		4	.90				
·法線直	角方向 0	鉄筋(下側鉄筋)	2 3	. 4		·法線平行方		疠(下側鉄筋) 1	2 :	3 4	
				1	1						1
	0.45	-54.81 -316.78	-38.45 -247.53	-1.60 -72.22				-165.47	-146.22	-23.58	
	1.25	-76.54	-86.10	-62.90		1.	.25				
自由端	2.85	-316.78	-247.53	-72.22	固定端	自由端		-125.41	-53.46	-5.94	固定端
	3.65	-76.54	-86.10	-62.90		3.	.65				
	4.45	-316.78	-247.53	-72.22				-165.47	-146.22	-23.58	
		-54.81	-38.45	-1.60							

## 格子桁解析結果(杭の軸力) 格子桁解析結果を完成時の押し波時のみ示す(図-3.4.15、3.4.16 参照)。

### 法線鉛直方向鉄筋 (法線直角方向断面)



### 法線鉛直方向鉄筋 (法線平行方向断面)

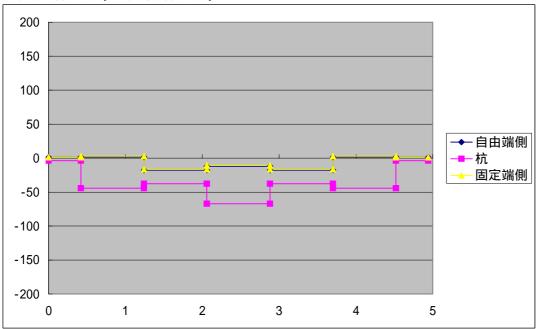
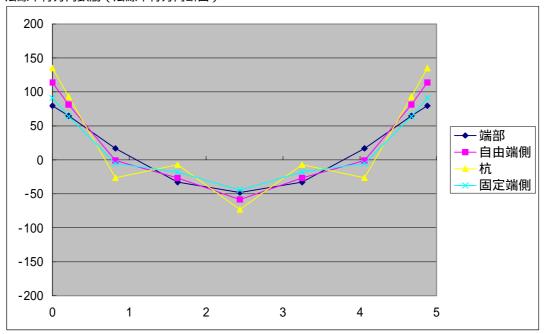




図 - 3.4.15 格子桁解析結果(その3)

### 法線平行方向鉄筋 (法線平行方向断面)



### 法線平行方向鉄筋 (法線直角方向断面)

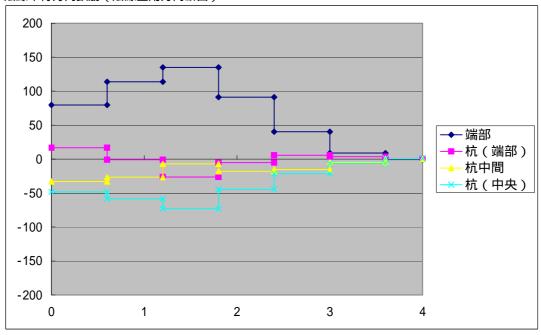



図 - 3.4.16 格子桁解析結果(その4)

# 格子桁解析のまとめ(杭の軸力)

·法線直	角方向	鉄筋(上側鉄筋	i)				·法線平	行方向	鉄筋(上側鉄筋	i)			
	0	1	2	! 3	. 4	ı		0	1	2	: 3	3 4	ı
	0.45	1.31	2.38	1.13	0.71	]		0.45					
	0.10	11.68	29.18	10.89	42.86			1.25	113.88	135.00	91.19	8.87	-
自由端	2.05	7.88	44.16	9.67	55.87	固定端	自由端	2.05	38.47	48.25	29.45	4.10	固定端
端	2.85					· 並補	谎	2.85	113.88				端
	4.45	11.68	29.18	10.89	42.86			3.65 4.45		135.00	91.19	8.87	-
	4.90	1.31	2.38	1.13	0.71			4.90					
·法線直知	角方向	鉄筋(下側鉄筋	)				·法線平	行方向的	跌筋(下側鉄筋)	)			
	0	1	2	3	4	Ī		0 <b>F</b>	1	Ī			
	0.45	-1.61	-3.61	-0.74	-0.81			0.45					
		-17.73	-44.30	-16.53	-28.23			1.25	-75.01	-88.91	-60.06	-5.84	
	2.05							2.05					
自由端	2.85	-11.97	-67.05	-10.69	-36.80	固 定 端	自由端	2.85	-58.40	-73.25	-44.71	-6.23	固定端
		-17.73	-44.30	-16.53	-28.23			3.65					
	4.45 4.90	-1.61	-3.61	-0.74	-0.81			4.45 4.90	-75.01	-88.91	-60.06	-5.84	

### 【波圧作用時・法線直角方向】

	50.46	50.46	354.30	354.30	354.30	221.32	221.32
	42.86	42.86	10.89	29.18	29.18	11.68	11.68
4	27.77	27.71-	-247.33	-247.33	-310.78	-310.78	47 73
	-20.23	-20.23	66.01-	-44.30	-44.30	67.71-	67.71-
	50.46	50.46	354.30	354.30	354.30	221.32	221.32
	42.86	42.86	10.89	29.18	29.18	11.68	11.68
	-72.22	-72.22	-247.53	-247.53	-316.78	-316.78	-316.78
	-28.23	-28.23	-16.53	-44.30	-44.30	-17.73	-17.73
L	7	70	254 20	06.4.00	26.4.20	224 22	200
y =	55.87	55.87	9.67	44.16	44 16	7.88	7 88
4.	-72.22	-72.22	-247.53	-247.53	-316.78	-316.78	-316.78
89r	-36.80	-36.80	-10.69	-67.05	-67.05	-11.97	-11.97
m							
	50.46	50.46	354.30	354.30	354.30	221.32	221.32
	42.86	42.86	10.89	29.18	29.18	11.68	11.68
	-72.22	-72.22	-247.53	-247.53	-316.78	-316.78	-316.78
	-28.23	-28.23	-16.53	-44.30	-44.30	-17.73	-17.73
	50.46	50 46	354 30	354.30	354.30	221 32	221.32
•	42.86	42.86	10.89	29.18	29.18	11.68	11.68
	-72.22	-72.22	-247.53	-247.53	-316.78	-316.78	-316.78
	-28.23	-28.23	-16.53	-44.30	-44.30	-17.73	-17.73
	1		L x =	-x = 3.975m			
							_

左側から 1段目 ; 杭頭モーメントによる上側の曲げモーメント (+ M)

2 段目 ; 軸力による上側の曲げモーメント ( + M )

3 段目 ; 杭頭モーメントによる下側の曲げモーメント(-M) 4 段目 ; 軸力による下側の曲げモーメント(-M)

図 - 3.4.17 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線直角方向)

【波圧作用時・法線平行方向】

236.84	236.84	87.62	236.84	236.84	
113.88	113.88	38.74	113.88	113.88	
-165.47	-165.47	-146.22	-165.47	-165.47	•
-75.01	-75.01	-58.40	-75.01	-75.01	
236.84	236.84	87.62	236.84	236.84	
113.88	113.88	38.74	113.88	113.88	
-165.47	-165.47	-146.22	-165.47	-165.47	
-75.01	-75.01	-58.40	-75.01	-75.01	
236.84	236.84	87.62	236.84	236.84	
135.00	135.00	48.25	135.00	135.00	
-165.47	-165.47	-125.41	-165.47	-165.47	
-88.91	-88.91	-73.25	-88.91	-88.91	
102.15	102.15	63.64	102.15	102.15	3.975m
135.00	135.00	48.25	135.00	135.00	6.
-146.22	-146.22	-53.46	-146.22	-146.22	1 3
-88.91	-88.91	-73.25	-88.91	-88.91	×
					-
102.15	102.15	63.64	102.15	102.15	
91.19	91.19	29.45	91.19	91.19	
-146.22	-146.22	-53.46	-146.22	-146.22	
-60.06	-60.06	-44.71	-60.06	-60.06	
00.00	00.00		00.00	00.00	
16.47	16.47	8.50	16.47	16.47	
8.87	8.87	4.10	8.87	8.87	
-23.58	-23.58	-5.94	-23.58	-23.58	
-5.84	-5.84	-6.23	-5.84	-5.84	
0.01	0.01	0.20	0.01	0.01	
16.47	16.47	8.50	16.47	16.47	
8.87	8.87	4.10	8.87	8.87	
-23.58	-23.58	-5.94	-23.58	-23.58	· · · · · · · · · · · · · · · · · · ·
-5.84	-5.84	-6.23	-5.84	-5.84	
		1	4 00-		
ļ	◀	L y =	4.89m	-	

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.18 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線平行方向)

### 【地震時・法線直角方向】

242.74	-242.74	242.74	-242.74	242.74	-242.74	242.74	-242.74	242.74	-242.74	
7.13	-7.08	7.13	-7.08	4.81	-4.78	7.13	-7.08	7.13	-7.08	
242.74	-242.74	242.74	-242.74	242.74	-242.74	242.74	-242.74	242.74	-242.74	
7.13	-7.08	7.13	-7.08	4.81	-4.78	7.13	-7.08	7.13	-7.08	
271.49 17.81	-271.49 -17.70	271.49 17.81	-271.49	271.49	-271.49 -26.79	271.49	-271.49 -17.70	271.49 17.81	-271.49 -17.70	
271.49	-271.49	271.49	-271.49	271.49	-271.49	271.49	-271.49	271.49	-271.49	_x = 3.975m
17.81	-17.70	17.81	-17.70	26.96	-26.79	17.81	-17.70	17.81	-17.70	
271.49	-271.49	271.49	-271.49	271.49	-271.49	271.49	-271.49	271.49	-271.49	L×
6.65	-6.60	6.65	-6.60	4.30	-4.27	6.65	-6.60	6.65	-6.60	
55.34	-55.34	55.34	-55.34	55.34	-55.34	55.34	-55.34	55.34	-55.34	
17.13	-17.23	17.13	-17.23	22.33	-22.47	17.13	-17.23	17.13	-17.23	
55.34	-55.34	55.34	-55.34	55.34	-55.34	55.34	-55.34	55.34	-55.34	
17.13	-17.23	17.13	-17.23	22.33	-22.47	17.13	-17.23	17.13	-17.23	
	<b>~</b>			L y =	4.89m			-		

左側から 1段目 ; 杭頭モーメントによる上側の曲げモーメント (+M)

2 段目 ; 軸力による上側の曲げモーメント ( + M )

3段目 ; 杭頭モーメントによる下側の曲げモーメント(-M)

4 段目 ; 軸力による下側の曲げモーメント ( - M )

図 - 3.4.19 杭頭モーメント及び軸力による曲げモーメント(地震時・法線直角方向)

【地震時・法線平行方向】

181.48	181.48	96.10	181.48	181.48	
45.51_	45.51	23.48	45.51	45.51	. — —
-181.48	-181.48	-96.10	-181.48	-181.48	
-45.79	-45.79	-23.34	-45.79	-45.79	
181.48	181.48	96.10	181.48	181.48	
45.51	45.51	23.48	45.51	45.51	
-181.48	-181.48	-96.10	-181.48	-181.48	
-45.79	-45.79	-23.34	-45.79	-45.79	
181.48	181.48	96.10	181.48	181.48	
53.95	53.95	29.46	53.95	53.95	
-181.48	-181.48	-96.10	-181.48	-181.48	
-54.28	-54.28	-29.27	-54.28	-54.28	
					ء
112.04	112.04	48.77	112.04	112.04	.975m
53.95	53.95	29.46	53.95	53.95	3.9
-112.04	-112.04	-48.77	-112.04	-112.04	 
-54.28	-54.28	-29.27	-54.28	-54.28	Ľ
					-
112.04	112.04	48.77	112.04	112.04	
36.44	36.44	17.98	36.44	36.44	
-112.04	-112.04	-48.77	-112.04	-112.04	
-36.67	-36.67	-17.86	-36.67	-36.67	
18.07	18.07	6.51	18.07	18.07	
3.54	3.54	2.51	3.54	3.54	
-18.07	-18.07	-6.51	-18.07	-18.07	
-3.57	-3.57	-2.49	-3.57	-3.57	
18.07	18.07	6.51	18.07	18.07	
3.54	3.54	2.51	3.54	3.54	
-18.07	-18.07	-6.51	-18.07	-18.07	
-3.57	-3.57	-2.49	-3.57	-3.57	
	_	L y = 4	4.89m	_	
<del>   </del>		-		-	

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.20 杭頭モーメント及び軸力による曲げモーメント(地震時・法線平行方向)

### c) 港内側フーチング

港内側フーチングの格子桁解析結果は省略する。

### 【波圧作用時・法線直角方向】

316.78     316.78     316.78       45.12     18.06	0 -221.31	-27.62 -11.05 -11.05	316.78 316.78 316.78	18.06	0 -221.31	-27.62 -11.05 -11.05	316.78   316.78   316.78	12.19	0	-7.46		316.78 316.78 316.78	18.06		-27.62 -11.05 -11.05	316 78 316 78 316 78	18.06	-354.30 -221.31 -221.31	-11.05	
247.53 45.12	-354.30	-27.62	247.53	45.12	-354.30	-27.62	247.53	68.30	-354.30	-41.81		247.53	45.12	-354.30	-27.62	247 53			-27.62	#OO 1 1 2
247.53 16.83	-354.30	-10.31	247.53	16.83	-354.30	-10.31	247.53	10.89	-354.30	-9.85		247.53	16.83	-354.30	-10.31	247 53	16.83	-354.30	-10.31	-
72.22 26.72	-50.46	-43.66	72.22	26.72	-50.46	-43.66	72.22	34.84	-50.46	-56.91		72.22	26.72	-50.46	-43.66	72 22	26.72	-50.46	-43.66	
72.22 26.72	-50.46	-43.66	72.22	26.72	-50.46	-43.66	72.22	34.84	-50.46	-56.91		72.22	26.72	-50.46	-43.66	70 00	26.72	-50.46	-43.66	
	-						Ly	/=	4.	89n	n						•			

左側から 1段目 ; 杭頭モーメントによる上側の曲げモーメント (+M)

2 段目 ; 軸力による上側の曲げモーメント ( + M )

3 段目 ; 杭頭モーメントによる下側の曲げモーメント ( - M )

4段目 ; 軸力による下側の曲げモーメント(-M)

図 - 3.4.21 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線直角方向)

【波圧作用時・法線平行方向】

165.47	165.47	125.41	165.47	165.47	
71.01_	71.01	59.49	71.01	71.01	
-236.84	-236.84	-87.62	-236.84	-236.84	
-116.00	-116.00	-36.42	-116.00	-116.00	
165.47	165.47	125.41	165.47	165.47	
71.01	71.01	59.49	71.01	71.01	
-236.84	-236.84	-87.62	-236.84	-236.84	
-116.00	-116.00	-36.42	-116.00	-116.00	
165.47	165.47	125.41	165.47	165.47	
84.18	84.18	74.61	84.18	84.18	
-236.84	-236.84	-87.62	-236.84	-236.84	
-137.51	-137.51	-45.67	-137.51	-137.51	
107.01	107.01	40.07	107.01	107.01	
146.22	146.22	53.46	146.22	146.22	E E
84.18		74.61			o.
-102.15	84.18		84.18	84.18	x = 4.00m
-102.15	-102.15 -137.51	-63.64 -45.67	-102.15 -137.51	-102.15	×
-137.31	- 137 .51	-45.07	- 137 .31	-137.51	
4.40.00	4.40.00	<b>5</b> 0.40	440.00	440.00	
146.22	146.22	53.46	146.22	146.22	
56.86	56.86	45.54	56.86	56.86	
-102.15	-102.15	-63.64	-102.15	-102.15	
-92.88	-92.88	-27.88	-92.88	-92.88	
23.58	23.58	5.94	23.58	23.58	
5.53	5.53	6.34	5.53	5.53	
-16.47	-16.47	-8.50	-16.47	-16.47	
-9.03	-9.03	-3.88	-9.03	-9.03	
23.58	23.58	5.94	23.58	23.58	1
5.53	5.53	6.34	5.53	5.53	
-16.47	-16.47	-8.50	-16.47	-16.47	
-9.03	-9.03	-3.88	-9.03	-9.03	
		L v =	4.89m		
H	4			-	

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.22 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線平行方向)

【地震時・法線直角方向】

55.34 17.21	55.34 17.21	271.49 6.61	271.49 17.73	271.49 17.73	242.74 7.09	242.74 7.09
-55.34	-55.34	-271.49	-271.49	-271.49	-242.74	-242.74
-17.15	-17.15	-6.63	-17.78	-17.78	-7.12	-7.12
55.34	55.34	271.49	271.49	271.49	242.74	242.74
17.21	17.21	6.61	17.73	17.73	7.09	7.09
-55.34	-55.34	-271.49	-271.49	-271.49	-242.74	-242.74
-17.15	-17.15	-6.63	-17.78	-17.78	-7.12	-7.12
55.34	55.34	271.49	271.49	271.49	242.74	242.74
22.43	22.43	4.28	26.68	26.68	4.79	4.79
-55.34	-55.34	-271.49	-271.49	-271.49	-242.74	-242.74
-22.36	-22.36	-4.29	-26.92	-26.92	-4.80	-4.80
55.34	55.34	271.49	271.49	271.49	242.74	242.74
17.21	17.21	6.61	17.73	17.73	7.09	7.09
-55.34	-55.34	-271.49	-271.49	-271.49	-242.74	-242.74
-17.15	-17.15	-6.63	-17.78	-17.78	-7.12	-7.12
55.34	55.34	271.49	271.49	271.49	242.74	242.74
17.21	17.21	6.61	17.73	17.73	7.09	7.09
-55.34	-55.34	-271.49	-271.49	-271.49	-242.74	-242.74
-17.15	-17.15	-6.63	-17.78	-17.78	-7.12	-7.12
		<del>-</del>	0			
•		L,	L X = 4 . UUIII			1

左側から 1段目 ; 杭頭モーメントによる上側の曲げモーメント (+M)

2 段目 ; 軸力による上側の曲げモーメント ( + M )

3 段目 ; 杭頭モーメントによる下側の曲げモーメント ( - M )

4 段目 ; 軸力による下側の曲げモーメント ( - M )

図 - 3.4.23 杭頭モーメント及び軸力による曲げモーメント(地震時・法線直角方向)

【地震時・法線平行方向】

181.48	181.48	96.10	181.48	181.48	
45.72	45.72	23.37	45.72	45.72	
-181.48	-181.48	-96.10	-181.48	-181.48	<b>A</b>
-45.57	-45.57	-23.45	-45.57	-45.57	
181.48	181.48	96.10	181.48	181.48	
45.72	45.72	23.37	45.72	45.72	
-181.48	-181.48	-96.10	-181.48	-181.48	
-45.57	-45.57	-23.45	-45.57	-45.57	
181.48	181.48	96.10	181.48	181.48	
54.19	54.19	29.31	54.19	54.19	
-181.48	-181.48	-96.10	-181.48	-181.48	
-54.02	-54.02	-29.41	-54.02	-54.02	
					_
112.04	112.04	48.77	112.04	112.04	= 4.00m
54.19	54.19	29.31	54.19	54.19	4-1
-112.04	-112.04	-48.77	-112.04	-112.04	i i
-54.02	-54.02	-29.41	-54.02	-54.02	×
112.04	112.04	48.77	112.04	112.04	
36.61	36.61	17.89	36.61	36.61	
-112.04	-112.04	-48.77	-112.04	-112.04	
-36.49	-36.49	-17.95	-36.49	-36.49	
18.07	18.07	6.51	18.07	18.07	
3.56	3.56	2.49	3.56	3.56	
-18.07	-18.07	-6.51	-18.07	-18.07	
-3.55	-3.55	-2.50	-3.55	-3.55	
18.07	18.07	6.51	18.07	18.07	
3.56	3.56	2.49	3.56	3.56	
-18.07	-18.07	-6.51	-18.07	-18.07	
-3.55	-3.55	-2.50	-3.55	-3.55	
		Ly = 4.	89m		
1		-			

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.24 杭頭モーメント及び軸力による曲げモーメント(地震時・法線平行方向)

### 3) 設計曲げモーメント

フーチングでは、杭頭モーメント及び軸力による曲げモーメントが卓越して大きいため、杭頭モーメント及び軸力による曲げモーメントが作用しない吊上げ時の値は、 設計曲げモーメントから除外する。

よって、設計曲げモーメントは波圧作用時と地震時のそれぞれについて、底面反力による曲げモーメントと杭頭モーメント及び軸力による曲げモーメントを合算し、相対的に見て大きい方の値が算出される荷重状態を採用値とする。

# a) 港外側フーチング 【波圧作用時】

表 - 3.4.10 港外側フーチングの設計曲げモーメント (波圧作用時)

(法線直角方向)

								(14)	<u> 聚且用刀凹)</u>
					波圧が	下 用 時			
N	_	版計算	による	杭頭モーメ	ントによる	軸力は	こよる	設計曲げる	=_ <  L
IN	٥. ا	曲げモー	-メント	曲げモ-	-メント	曲げモ-	-メント	以前四リ	ニーグノト
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		33.30	-73.31	50.46	-72.22	55.87	-36.80	139.63	-182.33
		6.71	-20.13	50.46	-72.22	55.87	-36.80	113.04	-129.15
		4.89	-4.66	354.30	-247.53	9.67	-10.69	368.86	-262.88
		14.07	-7.60	354.30	-247.53	44.16	-67.05	412.53	-322.18
		14.79	-6.41	354.30	-316.78	44.16	-67.05	413.25	-390.24
		10.24	-3.54	221.32	-316.78	7.88	-11.97	239.44	-332.29
		0.00	0.00	221.32	-316.78	7.88	-11.97	229.20	-328.75
		21.18	-44.09	50.46	-72.22	42.86	-28.23	114.50	-144.54
		3.55	-11.44	50.46	-72.22	42.86	-28.23	96.87	-111.89
		2.88	-3.08	354.30	-247.53	10.89	-16.53	368.07	-267.14
		7.23	-4.21	354.30	-247.53	29.18	-44.30	390.71	-296.04
		6.49	-3.02	354.30	-316.78	29.18	-44.30	389.97	-364.10
		3.74	-1.27	221.32	-316.78	11.68	-17.73	236.74	-335.78
		0.00	0.00	221.32	-316.78	11.68	-17.73	233.00	-334.51
		0.00	0.00	50.46	-72.22	42.86	-28.23	93.32	-100.45
		1.34	-2.51	50.46	-72.22	42.86	-28.23	94.66	-102.96
		3.40	-7.48	354.30	-247.53	10.89	-16.53	368.59	-271.54
		4.79	-11.79	354.30	-247.53	29.18	-44.30	388.27	-303.62
		5.48	-15.01	354.30	-316.78	29.18	-44.30	388.96	-376.09
		5.87	-17.73	221.32	-316.78	11.68	-17.73	238.87	-352.24
		0.00	0.00	221.32	-316.78	11.68	-17.73	233.00	-334.51

					波圧が	下 用 時			
No	. [	版計算	による	杭頭モーメ	ントによる	軸力は	こよる	設計曲げる	=_ <> \ L
INC	٦. [	曲げモー	-メント	曲げモ-	-メント	曲げモ-	-メント		ニーグント
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		5.57	-12.21	8.50	-5.94	4.10	-6.23	18.17	-24.38
		3.53	-7.32	16.47	-23.58	8.87	-5.84	28.87	-36.74
		0.00	0.00	16.47	-23.58	8.87	-5.84	25.34	-29.42
		2.32	-1.17	8.50	-5.94	4.10	-6.23	14.92	-13.34
		0.50	-0.63	16.47	-23.58	8.87	-5.84	25.84	-30.05
		7.99	-14.97	16.47	-23.58	8.87	-5.84	33.33	-44.39
		17.76	-7.40	63.64	-53.46	29.45	-44.71	110.85	-105.57
		6.73	-3.43	102.15	-146.22	91.19	-60.06	200.07	-209.71
		20.36	-44.89	102.15	-146.22	91.19	-60.06	213.70	-251.17
		30.94	-11.98	63.64	-53.46	48.25	-73.25	142.83	-138.69
		10.75	-4.68	102.15	-146.22	135.00	-88.91	247.90	-239.81
		28.73	-71.02	102.15	-146.22	135.00	-88.91	265.88	-306.15
		40.92	-14.81	87.62	-125.41	48.25	-73.25	176.79	-213.47
		13.26	-4.96	236.84	-165.47	135.00	-88.91	385.10	-259.34
		32.90	-90.20	236.84	-165.47	135.00	-88.91	404.74	-344.58
		48.11	-16.46	87.62	-125.41	38.74	-58.40	174.47	-200.27
		14.79	-4.85	236.84	-165.47	113.88	-75.01	365.51	-245.33
		35.17	-106.33	236.84	-165.47	113.88	-75.01	385.89	-346.81
		53.76	-17.77	87.62	-125.41	38.74	-58.40	180.12	-201.58
		16.25	-4.86	236.84	-165.47	113.88	-75.01	366.97	-245.34
		34.80	-117.16	236.84	-165.47	113.88	-75.01	385.52	-357.64

## 【地震時】

表 - 3.4.11 港外側フーチングの設計曲げモーメント(地震時)

(法線直角方向)

							(14)	<u>永且用刀凹)</u>
				地震	夏 時			
NIO	版計算	による	杭頭モーメ	ントによる	軸力は	こよる	設計曲げる	=_ <> , L
No.	曲げモー	-メント	曲げモ-	-メント	曲げモー		改計出けて	ニーメント
	上側	下 側	上側	下 側	上側	下 側	上側	下 側
	0.00	-35.20	55.34	-55.34	22.33	-22.47	77.67	-113.01
	0.00	-10.35	55.34	-55.34	22.33	-22.47	77.67	-88.16
	1.68	0.00	271.49	-271.49	4.30	-4.27	277.47	-275.76
	6.42	0.00	271.49	-271.49	26.96	-26.79	304.87	-298.28
	7.20	0.00	271.49	-271.49	26.96	-26.79	305.65	-298.28
	5.23	0.00	242.74	-242.74	4.81	-4.78	252.78	-247.52
	0.00	0.00	242.74	-242.74	4.81	-4.78	247.55	-247.52
	0.00	-20.84	55.34	-55.34	17.13	-17.23	72.47	-93.41
	0.00	-5.94	55.34	-55.34	17.13	-17.23	72.47	-78.51
	0.89	0.00	271.49	-271.49	6.65	-6.60	279.03	-278.09
	3.21	0.00	271.49	-271.49	17.81	-17.70	292.51	-289.19
	3.09	0.00	271.49	-271.49	17.81	-17.70	292.39	-289.19
	1.92	0.00	242.74	-242.74	7.13	-7.08	251.79	-249.82
	0.00	0.00	242.74	-242.74	7.13	-7.08	249.87	-249.82
	0.00	0.00	55.34	-55.34	17.13	-17.23	72.47	-72.57
	0.00	-1.15	55.34	-55.34	17.13	-17.23	72.47	-73.72
	0.00	-3.59	271.49	-271.49	6.65	-6.60	278.14	-281.68
	0.00	-5.81	271.49	-271.49	17.81	-17.70	289.30	-295.00
	0.00	-7.57	271.49	-271.49	17.81	-17.70	289.30	-296.76
	0.00	-9.12	242.74	-242.74	7.13	-7.08	249.87	-258.94
	0.00	0.00	242.74	-242.74	7.13	-7.08	249.87	-249.82

(法線平行方向)

					地震	宴 時		(,,_,,,	w    11771 <u>-</u> 1/
	-	ᄕᅪᄷ	I 7	#15 T J		-			
No	0	版計算		杭頭モーメ			こよる	設計曲げる	Fーメント
1 ' '	٠. ا	曲げモ-			-メント		<u>-メント</u>		
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		0.00	-5.85	6.51	-6.51	2.51	-2.49	9.02	-14.85
		0.00	-3.46	18.07	-18.07	3.54	-3.57	21.61	-25.10
		0.00	0.00	18.07	-18.07	3.54	-3.57	21.61	-21.64
		1.09	0.00	6.51	-6.51	2.51	-2.49	10.11	-9.00
		0.12	0.00	18.07	-18.07	3.54	-3.57	21.73	-21.64
		0.00	-6.86	18.07	-18.07	3.54	-3.57	21.61	-28.50
		8.71	0.00	48.77	-48.77	17.98	-17.86	75.46	-66.63
		3.13	0.00	112.04	-112.04	36.44	-36.67	151.61	-148.71
		0.00	-21.56	112.04	-112.04	36.44	-36.67	148.48	-170.27
		15.43	0.00	48.77	-48.77	29.46	-29.27	93.66	-78.04
		5.22	0.00	112.04	-112.04	53.95	-54.28	171.21	-166.32
		0.00	-35.07	112.04	-112.04	53.95	-54.28	165.99	-201.39
		20.69	0.00	96.10	-96.10	29.46	-29.27	146.25	-125.37
		6.66	0.00	181.48	-181.48	53.95	-54.28	242.09	-235.76
		0.00	-45.55	181.48	-181.48	53.95	-54.28	235.43	-281.31
		24.60	0.00	96.10	-96.10	23.48	-23.34	144.18	-119.44
		7.61	0.00	181.48	-181.48	45.51	-45.79	234.60	-227.27
		0.00	-54.70	181.48	-181.48	45.51	-45.79	226.99	-281.97
		27.66	0.00	96.10	-96.10	23.48	-23.34	147.24	-119.44
		8.50	0.00	181.48	-181.48	45.51	-45.79	235.49	-227.27
		0.00	-61.37	181.48	-181.48	45.51	-45.79	226.99	-288.64

以上の結果より、波圧作用時の曲げモーメントの方が地震時よりも大きいので、波 圧作用時の値を採用する。

採用値を図示すれば、次ページ以降のとおり。

【港外側フーチング採用値 波圧作用時・法線直角方向】

93.32	93.32 94.66 -100.45 -102.96	368.59 -271.54	388.27 -303.62	388.96 -376.09	238.87 - 352.24	233.00
114.50 96.87 -144.54 -111.89		368.07	390.71	389.97	236.74	233.00
139.63 -182.33 -129.15	10	368.86 -262.88	412.53	413.25 -390.24	239.44	229.20
114.50 96.87 -144.54 -111.89	6	368.07 -267.14	390.71	389.97	236.74	233.00
93.32 94.66 -100.45 -102.96		368.59 -271.54	388.27 -303.62	388.96	-352.24	233.00
		L×	L x = 3.975m			

左側 ; 上側の曲げモーメント ( + M ) 右側 ; 下側の曲げモーメント ( - M )

図 - 3.4.25 設計曲げモーメント (港外側フーチング採用値 波圧作用時・法線直角方向)

【港外側フーチング採用値 波圧作用時・法線平行方向】

385.52	366.97	180.12	366.97	385.52	
-357.64	-245.34	-201.58	-245.34	-357.64	<b>A</b>
385.89	365.51	174.47	365.51	385.89	
-346.81	-245.33	-200.27	-245.33	-346.81	
404.74	385.10	176.79	385.10	404.74	
-344.58	-259.34	-213.47	-259.34	-344.58	
					75m
265.88	247.90	142.83	247.90	265.88	3.975m
-306.15	-239.81	-138.69	-239.81	-306.15	 
					اد
213.70	200.07	110.85	200.07	213.70	
-251.17	-209.71	-105.57	-209.71	-251.17	
33.33	25.84	14.92	25.84	33.33	
-44.39	-30.05	-13.34	-30.05	-44.39	
25.34	28.87	18.17	28.87	25.34	<u> </u>
-29.42	-36.74	-24.38	-36.74	-29.42	
-		L y = 4.	89m	-	

上側;上側の曲げモーメント(+M) 下側;下側の曲げモーメント(-M)

図 - 3.4.26 設計曲げモーメント (港外側フーチング採用値 波圧作用時・法線平行方向)

# b) 港内側フーチング 【波圧作用時】

表 - 3.4.12 港内側フーチングの設計曲げモーメント (波圧作用時)

(法線直角方向)

	(仏縁直角灯門)										
				波圧が	下用 時						
Νo	版計算	による	杭頭モーメ		軸力は	こよる	設計曲げモーメント				
INO	曲げモー	-メント	曲げモ-	-メント	曲げモ-	-メント		レーグノド			
	上側	下 側	上側	下 側	上側	下 側	上側	下 側			
	24.71	-62.98	72.22	-50.46	34.84	-56.91	131.77	-170.35			
	5.63	-17.19	72.22	-50.46	34.84	-56.91	112.69	-124.56			
	4.32	-2.81	247.53	-354.30	10.89	-9.85	262.74	-366.96			
	12.16	-5.32	247.53	-354.30	68.30	-41.81	327.99	-401.43			
	12.69	-4.83	316.78	-354.30	68.30	-41.81	397.77	-400.94			
	8.75	-2.92	316.78	-221.31	12.19	-7.46	337.72	-231.69			
	0.00	0.00	316.78	-221.31	12.19	-7.46	328.97	-228.77			
	15.41	-37.94	72.22	-50.46	26.72	-43.66	114.35	-132.06			
	3.07	-9.74	72.22	-50.46	26.72	-43.66	102.01	-103.86			
	2.57	-1.82	247.53	-354.30	16.84	-10.31	266.94	-366.43			
	6.26	-2.88	247.53	-354.30	45.12	-27.62	298.91	-384.80			
	5.58	-2.22	316.78	-354.30	45.12	-27.62	367.48	-384.14			
	3.19	-1.06	316.78	-221.31	18.06	-11.05	338.03	-233.42			
	0.00	0.00	316.78	-221.31	18.06	-11.05	334.84	-232.36			
	0.00	0.00	72.22	-50.46	26.72	-43.66	98.94	-94.12			
	0.94	-2.16	72.22	-50.46	26.72	-43.66	99.88	-96.28			
	2.52	-6.42	247.53	-354.30	16.84	-10.31	266.89	-371.03			
	3.71	-10.11	247.53	-354.30	45.12	-27.62	296.36	-392.03			
	4.43	-12.83	316.78	-354.30	45.12	-27.62	366.33	-394.75			
	4.94	-15.13	316.78	-221.31	18.06	-11.05	339.78	-247.49			
	0.00	0.00	316.78	-221.31	18.06	-11.05	334.84	-232.36			

				波圧が	F 用 時			
No		による -メント	杭頭モーメ 曲げモ-	ントによる -メント	軸力に 曲げモ-	こよる -メント	設計曲げる	ミーメント
	上側	下 側	上側	下 側	上側	下 側	上側	下 側
	4.13	-10.49	5.94	-8.50	6.34	-3.88	16.41	-22.87
	2.56	-6.30	23.58	-16.47	5.53	-9.03	31.67	-31.80
	0.00	0.00	23.58	-16.47	5.53	-9.03	29.11	-25.50
	2.00	-0.84	5.94	-8.50	6.34	-3.88	14.28	-13.22
	0.45	-0.36	23.58	-16.47	5.53	-9.03	29.56	-25.86
	5.62	-12.92	23.58	-16.47	5.53	-9.03	34.73	-38.42
	15.23	-5.66	53.46	-63.64	45.54	-27.88	114.23	-97.18
	5.81	-2.44	146.22	-102.15	56.86	-92.88	208.89	-197.47
	15.11	-38.56	146.22	-102.15	56.86	-92.88	218.19	-233.59
	26.49	-9.44	53.46	-63.64	74.61	-45.67	154.56	-118.75
	9.22	-3.53	146.22	-102.15	84.18	-137.51	239.62	-243.19
	22.26	-60.85	146.22	-102.15	84.18	-137.51	252.66	-300.51
	34.97	-11.99	125.41	-87.62	74.61	-45.67	234.99	-145.28
	11.34	-3.97	165.47	-236.84	84.18	-137.51	260.99	-378.32
	26.56	-77.10	165.47	-236.84	84.18	-137.51	276.21	-451.45
	41.07	-13.66	125.41	-87.62	59.49	-36.42	225.97	-137.70
	12.61	-4.10	165.47	-236.84	71.01	-116.00	249.09	-356.94
	29.60	-90.72	165.47	-236.84	71.01	-116.00	266.08	-443.56
	45.86	-14.96	125.41	-87.62	59.49	-36.42	230.76	-139.00
	13.83	-4.27	165.47	-236.84	71.01	-116.00	250.31	-357.11
	30.73	-99.76	165.47	-236.84	71.01	-116.00	267.21	-452.60

## 【地震時】

表 - 3.4.13 港内側フーチングの設計曲げモーメント(地震時)

(法線直角方向)

	(/石冰豆用刀闩)								
				地震	夏時				
No.	版計算	による	杭頭モーメ		軸力は	こよる	設計曲げモーメント		
140.	曲げモ-	-メント	曲げモ-	-メント	曲げモ-	-メント	成別四リノ		
	上側	下 側	上側	下 側	上側	下 側	上側	下 側	
	0.00	-35.57	55.34	-55.34	22.43	-22.36	77.77	-113.27	
	0.00	-10.47	55.34	-55.34	22.43	-22.36	77.77	-88.17	
	1.67	0.00	271.49	-271.49	4.28	-4.29	277.44	-275.78	
	6.48	0.00	271.49	-271.49	26.83	-26.92	304.80	-298.41	
	7.27	0.00	271.49	-271.49	26.83	-26.92	305.59	-298.41	
	5.29	0.00	242.74	-242.74	4.79	-4.80	252.82	-247.54	
	0.00	0.00	242.74	-242.74	4.79	-4.80	247.53	-247.54	
	0.00	-21.06	55.34	-55.34	17.21	-17.15	72.55	-93.55	
	0.00	-6.02	55.34	-55.34	17.21	-17.15	72.55	-78.51	
	0.89	0.00	271.49	-271.49	6.61	-6.63	278.99	-278.12	
	3.24	0.00	271.49	-271.49	17.73	-17.78	292.46	-289.27	
	3.13	0.00	271.49	-271.49	17.73	-17.78	292.35	-289.27	
	1.94	0.00	242.74	-242.74	7.09	-7.12	251.77	-249.86	
	0.00	0.00	242.74	-242.74	7.09	-7.12	249.83	-249.86	
	0.00	0.00	55.34	-55.34	17.21	-17.15	72.55	-72.49	
	0.00	-1.16	55.34	-55.34	17.21	-17.15	72.55	-73.65	
	0.00	-3.63	271.49	-271.49	6.61	-6.63	278.10	-281.75	
	0.00	-5.88	271.49	-271.49	17.73	-17.78	289.22	-295.15	
	0.00	-7.66	271.49	-271.49	17.73	-17.78	289.22	-296.93	
	0.00	-9.23	242.74	-242.74	7.09	-7.12	249.83	-259.09	
	0.00	0.00	242.74	-242.74	7.09	-7.12	249.83	-249.86	

(法線平行方向)

					地震	夏時		(1-11	w i ij/ji <u>-</u> j/
	-	11-1-				-			
NI.	ο.	版計算	による	杌頭モーメ	ントによる	軸力は	こよる	設計曲げモーメント	
111	٥. [	曲げモー	-メント	曲げモ-	-メント	曲げモ-	-メント		
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		0.00	-5.92	6.51	-6.51	2.49	-2.50	9.00	-14.93
		0.00	-3.50	18.07	-18.07	3.56	-3.55	21.63	-25.12
		0.00	0.00	18.07	-18.07	3.56	-3.55	21.63	-21.62
		1.09	0.00	6.51	-6.51	2.49	-2.50	10.09	-9.01
		0.13	0.00	18.07	-18.07	3.56	-3.55	21.76	-21.62
		0.00	-6.92	18.07	-18.07	3.56	-3.55	21.63	-28.54
		8.81	0.00	48.77	-48.77	17.89	-17.95	75.47	-66.72
		3.16	0.00	112.04	-112.04	36.61	-36.49	151.81	-148.53
		0.00	-21.78	112.04	-112.04	36.61	-36.49	148.65	-170.31
		15.60	0.00	48.77	-48.77	29.31	-29.41	93.68	-78.18
		5.27	0.00	112.04	-112.04	54.19	-54.02	171.50	-166.06
		0.00	-35.47	112.04	-112.04	54.19	-54.02	166.23	-201.53
		20.94	0.00	96.10	-96.10	29.31	-29.41	146.35	-125.51
		6.74	0.00	181.48	-181.48	54.19	-54.02	242.41	-235.50
		0.00	-46.07	181.48	-181.48	54.19	-54.02	235.67	-281.57
		24.89	0.00	96.10	-96.10	23.37	-23.45	144.36	-119.55
		7.70	0.00	181.48	-181.48	45.72	-45.57	234.90	-227.05
		0.00	-55.34	181.48	-181.48	45.72	-45.57	227.20	-282.39
		27.98	0.00	96.10	-96.10	23.37	-23.45	147.45	-119.55
		8.61	0.00	181.48	-181.48	45.72	-45.57	235.81	-227.05
		0.00	-62.11	181.48	-181.48	45.72	-45.57	227.20	-289.16

以上の結果より、波圧作用時の曲げモーメントの方が地震時よりも大きいので、波 圧作用時の値を採用する。

採用値を図示すれば、次ページ以降のとおり。

【港内側フーチング採用値 波圧作用時・法線直角方向】

334.84 -232.36	328.97	-228.77	-232.36	334.84 -232.36	
338.03 -233.42		- 231.69	-233.42	339.78 -247.49	<b>A</b>
367.48 -384.14	397.77	-400.94 -400.94 -48	-384.14	366.33 -394.75	
298.91 -384.80	327.99	-401.43	-384.80	296.36 -392.03	L x = 4.00m
266.94 -366.43	262.74	-366.96 -36.96 -36.04	-366.43	266.89 -371.03	L x =
102.01 -103.86	112.69	-124.56	-103.86		
-132.06	131.77	-170.35	-132.06		
	1 v = /	1 90m			
	114.35 102.01 266.94 298.91 367.48 338.03 -132.06 -103.86 -366.43 -384.80 -384.14 -233.42	114.35     102.01     266.94     298.91     367.48     338.03       -132.06     -103.86     -366.43     -384.80     -384.14     -233.42       131.77     112.69     262.74     327.99     397.77     337.72	102.01 266.94 298.91 367.48 338.03 -103.86 -366.43 -384.80 -384.14 -233.42 -112.69 262.74 327.99 397.77 337.72 -124.56 -366.96 -401.43 -400.94 -231.69	114.35     102.01     266.94     298.91     367.48     338.03       -132.06     -103.86     -366.43     -384.80     -384.14     -233.42       131.77     112.69     262.74     327.99     397.77     337.72       -170.35     -124.56     -366.96     -401.43     -400.94     -231.69       114.35     102.01     266.94     298.91     367.48     338.03       -132.06     -103.86     -366.43     -384.80     -384.14     -233.42	114.35         102.01         266.94         298.91         367.48         338.03           -132.06         -103.86         -366.43         -384.80         -384.14         -233.42           131.77         112.69         262.74         327.99         397.77         337.72           -170.35         -124.56         -366.96         -401.43         -400.94         -231.69           114.35         102.01         266.94         298.91         367.48         338.03           -132.06         -103.86         -366.43         -384.80         -384.14         -233.42           98.94         99.88         266.89         296.36         366.33         339.78           -94.12         -96.28         -371.03         -392.03         -394.75         -247.49

左側 ; 上側の曲げモーメント ( + M ) 右側 ; 下側の曲げモーメント ( - M )

図 - 3.4.27 設計曲げモーメント (港内側フーチング採用値 波圧作用時・法線直角方向)

【港内側フーチング採用値 波圧作用時・法線平行方向】

267.21	250.31	230.76	250.31	267.21	
-452.60	-357.11	-139.00	-357.11	-452.60	<b>A</b>
266.08	249.09	225.97	249.09	266.08	
-443.56	-356.94	-137.70	-356.94	-443.56	
276.21	260.99	234.99	260.99	276.21	
-451.45	-378.32	-145.28	-378.32	-451.45	
					Æ
252.66	239.62	154.56	239.62	252.66	- x = 4.00m
-300.51	-243.19	-118.75	-243.19	-300.51	7 = 3
					×
218.19	208.89	114.23	208.89	218.19	
-233.59	-197.47	-97.18	-197.47	-233.59	
04.70	20, 50	44.00	20, 50	24.72	
34.73 -38.42	29.56 -25.86	14.28 -13.22	29.56 -25.86	34.73 -38.42	
00.12	20.00	10.22	20.00	00.12	
29.11	31.67	16.41	31.67	29.11	<b>.</b>
-25.50	-31.80	-22.87	-31.80	-25.50	
1				Í	
		1	4 00		
ļ	◄	L y =	4.89m		

上側;上側の曲げモーメント(+M) 下側;下側の曲げモーメント(-M)

図 - 3.4.28 設計曲げモーメント (港内側フーチング採用値 波圧作用時・法線平行方向)

# (2) バットレス

### 1) バットレスに対して垂直に作用する波圧の曲げモーメント

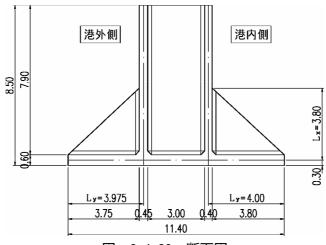



図 - 3.4.29 断面図

図 - 3.4.14 辺長比と使用曲げモーメント係数表

部	材	L x (m)	L y (m)	= Lx Ly	使用係数 表の	支承条件
15	港外側	3.80	3.975	0.96	1.00	二辺固定一辺自由版
バットレス	港内側	3.80	4.00	0.95	1.00	11

### a) 港外側バットレス

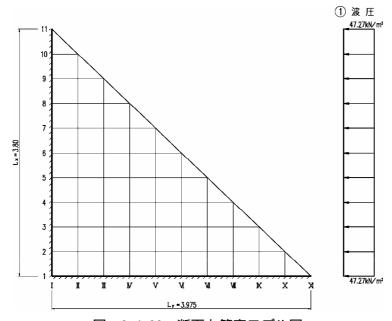



図 - 3.4.30 断面力算定モデル図

 $P = 47.27 kN/m^2 \quad (等分布荷重)$   $= 1.00 \quad , \quad L \, x = 3.80 m$   $M \, x = P \cdot L \, x^2 \cdot \, X = 47.27 \times 3.80^2 \cdot \, X = 682.58 \cdot \, X \quad (kN \cdot m/m)$   $M \, y = P \cdot L \, x^2 \cdot \, Y = 47.27 \times 3.80^2 \cdot \, Y = 682.58 \cdot \, Y \quad (kN \cdot m/m)$ 

	ivi y	~	-	(鉛直方向)		
				鉛直方向)		
N	0.	$P \times L x^2$	X	Mx		
	1	682.58	0.0000	0.00		
	2	682.58	0.0011	0.75		
	3	682, 58	-0.0039	-2.66		
	4	682, 58	-0.0065	-4. 44		
	(5)	682.58	-0.0084	-5. 73		
I	6	682. 58	-0.0094	-6. 42		
	(7)	682.58	-0.0095	-6. 48		
	(8)	682, 58	-0.0087	-5. 94		
	(9)	682. 58	-0.0069	-4.71		
	(10)	682. 58	-0.0039	-2.66		
	(11)	682, 58	0.0000	0.00		
	(1)	682. 58	-0.0074	-5. 05		
	2	682. 58	-0.0031	-2. 12		
	3	682.58	-0.0011	-0.75		
	4	682. 58	-0.0010	-0.68		
	5	682. 58	-0, 0014	-0.96		
п	6	682. 58	-0.0014	-1. 23		
	7	682. 58	-0. 0020	-1. 37		
	8	682. 58	-0.0018	-1. 23		
				-0. 82		
	9	682, 58	-0.0012			
	(10)	682. 58	-0.0031	-2. 12		
	1	682. 58	-0.0235	-16.04		
	2	682. 58	-0.0081	-5, 53		
	3	682. 58	0.0000	0.00		
ļ ,,,,	4	682.58	0.0037	2, 53		
Ш	5	682. 58	0.0051	3. 48		
	6	682. 58	0.0055	3. 75		
	7	682.58	0.0054	3.69		
	8	682, 58	0.0052	3. 55		
	9	682.58	0.0013	0.89		
	<u> </u>	682, 58	-0, 0387	-26. 42		
	2	682, 58	-0.0141	-9. 62		
	3	682.58	-0.0005	-0.34		
IV	4	682.58	0.0065	4.44		
l 1 v	5	682. 58	0.0098	6. 69		
	<b>(6)</b>	682, 58	0.0110	7. 51		
	7	682, 58	0.0111	7. 58		
	8	682. 58	0.0078	5. 32		
	1	682. 58	-0.0497	-33. 92		
	2	682.58	-0.0194	-13. 24		
	3	682. 58	-0.0020	-1.37		
V	4)	682.58	0,0072	4.91		
	<u>(5)</u>	682. 58	0.0117	7. 99		
	6	682. 58	0.0135	9. 21		
	(7)	682.58	0.0124	8.46		
	(1)	682. 58	-0, 0558	-38.09		
	2	682. 58	-0.0231	-15.77		
	3	682. 58	-0,0043	-2.94		
VI	<u>4</u>	682. 58	0.0056	3. 82		
	5	682. 58	0.0104	7. 10		
	6	682. 58	0.0123	8.40		
	Ū	682, 58	-0.0566	-38.63		
	2	682. 58	-0.0248	-16.93		
VII	3	682. 58	-0.0072	-4. 91		
۱ ' <u>"</u>	4	682. 58	0.0015	1. 02		
	5	682. 58		4. 44		
	1	682. 58	0. 0065 -0. 0515	-35. 15		
	F			-35.15 $-16.59$		
VIII	(2)	682.58	-0. 0243 -0. 0111	-10.09		
i		682. 58	-0.0111	-7. 58		
	(4)	682.58	-0.0035	-2.39		
rv.	(1)	682, 58	-0.0406	-27.71		
IX	2	682. 58	-0, 0221	-15, 09		
	3	682. 58	-0.0137	-9, 35		
X	(1)	682. 58	-0.0231	-15.77		
	2	682. 58	-0.0165	-11. 26		
XI	(1)	682. 58	0.0000	0.00		

		O I (KI	· ···/ ··· <i>)</i>	を出土中ノ
		D V I 2		<u>水平方向)</u>
IN	о,	$P \wedge L X$	Y 0.0000	My
	<u>I</u>	682, 58 682, 58	0.0000	0.00
	. <u>П</u> Ш		0.0011	0.75
		682.58	-0.0039	-2.66
	IV	682. 58	-0.0065	-4. 44
1	$\frac{V}{v}$	682, 58 682, 58	-0.0084 $-0.0094$	-5, 73 -6, 42
	VI VII	682. 58	-0.0094 $-0.0095$	-6. 42 -6. 48
	VII	682. 58	-0.0093	-5. 94
	IΧ	682. 58	-0.0067	-3.94 $-4.71$
	$\frac{X}{X}$	682. 58	-0.0039	-2.66
	XI	682.58	0.0000	0.00
	I	682. 58	-0.0074	-5. 05
	ı II	682.58	-0.0031	-2. 12
		682.58	-0.0011	-0. 75
	IV	682. 58	-0.0011	-0.68
_	$\frac{1}{V}$	682. 58	-0.0014	-0, 96
2	VI	682. 58	-0.0014	-1. 23
	-VI	682. 58	-0.0020	-1. 37
	· VII	682.58	-0.0018	-1. 23
	$\frac{\mathbf{x}}{\mathbf{x}}$	682. 58	-0.0012	-0. 82
	X	682. 58	-0.0012	-2. 12
	I	682. 58	-0.0235	-16. 04
	Î	682. 58	-0.0081	-5. 53
	<u>III</u>	682.58	0.0000	0.00
	IV	682. 58	0.0037	2, 53
3	V	682. 58	0.0051	3. 48
	VI	682.58	0.0055	3. 75
	VII	682. 58	0.0054	3. 69
	VIII	682.58	0.0052	3. 55
	IX	682. 58	0.0013	0.89
	I	682. 58	-0.0387	-26, 42
	П	682. 58	-0.0141	-9.62
	$\mathbf{III}$	682.58	-0.0005	-0.34
4	IV	682. 58	0.0065	4.44
( <del>1</del> )	V	682. 58	0.0098	6.69
	VI	682.58	0.0110	7.51
	VII	682, 58	0.0111	7, 58
	VIII	682. 58	0.0078	5.32
	I	682. 58	-0.0497	-33.92
	П	682. 58	-0.0194	-13. 24
		682. 58	-0.0020	-1.37
(5)	IV	682.58	0.0072	4. 91
	<u>V</u> _	682.58	0.0117	7. 99
	. VI	682.58	0.0135	9. 21
	<u>VII</u>	682.58	0.0124	8.46
	I	682. 58	-0.0558	-38. 09
	_ <u>II</u>	682.58	-0.0231	-15. 77
6	. III	682.58	-0.0043	-2, 94
		682.58	0.0056	3.82
	V VI	682. 58 682. 58	0. 0104 0. 0123	7. 10 8. 40
<u> </u>	I	682. 58	-0.0123	-38. 63
	$\Pi$	682. 58	-0.0366 $-0.0248$	-16.93
7	$\frac{\Pi}{\Pi}$	682. 58	-0.0248	-4. 91
	. IV	682. 58	0.0012	1. 02
	V	682.58	0.0015	4. 44
	· I	682.58	-0.0515	-35. 15
	<u>I</u>	682. 58	-0.0243	-16. 59
8	· III	682. 58	-0.0111	-7. 58
Ī	IV	682. 58	-0.0035	-2, 39
	I	682.58	-0.0406	-27.71
9	<u> </u>	682. 58	-0.0221	-15. 09
	Ш	682.58	-0.0137	-9. 35
	I	682. 58	-0.0231	-15. 77
10	. II	682.58	-0.0165	-11. 26
(1)	I	682.58	0.0000	0.00
$\sim$				

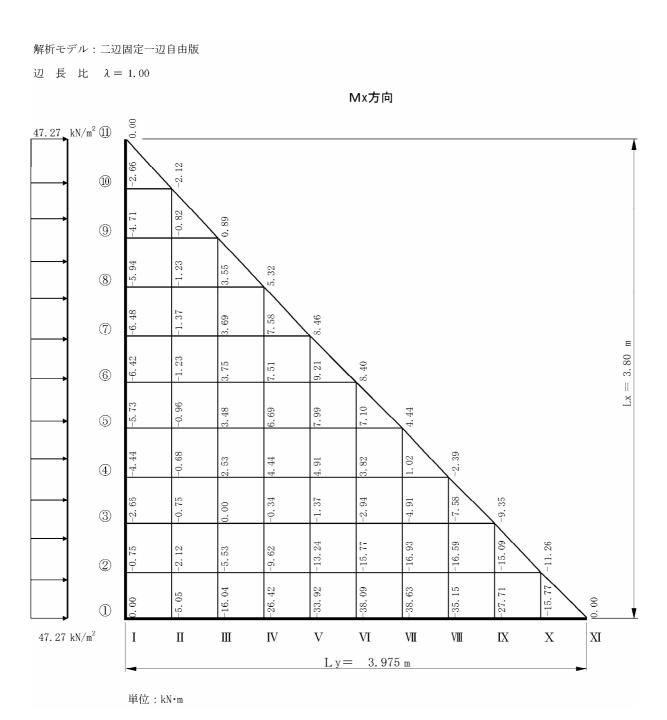



図 - 3.4.31 曲げモーメント Mx (港外側バットレス)

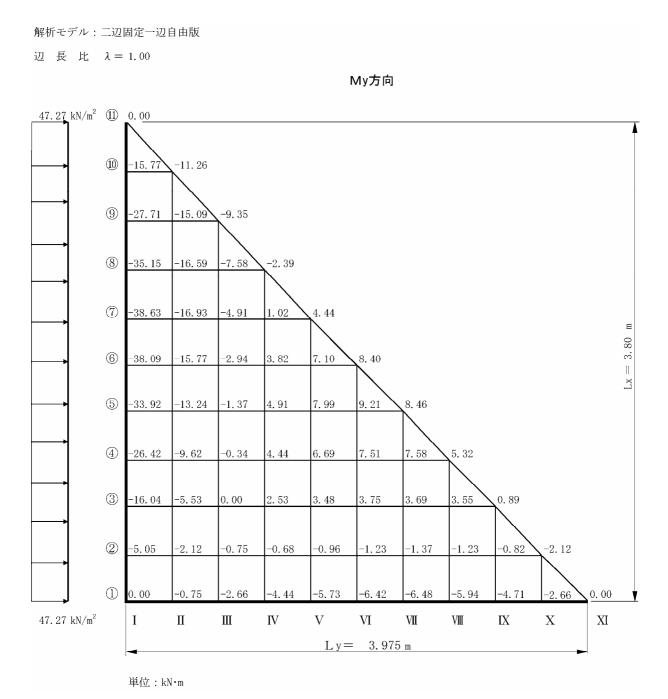



図 - 3.4.32 曲げモーメント My (港外側バットレス)

# b) 港内側バットレス

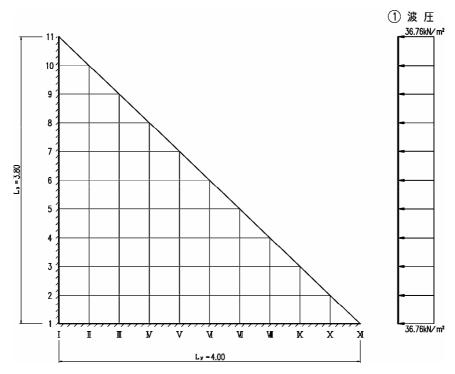



図 - 3.4.33 断面力算定モデル図

 $P=36.76kN/m^2 \quad (等分布荷重) \\ =1.00 \quad , \quad L\,x=3.80m \\ M\,x=P \cdot L\,x^2 \cdot \,X=36.76 \times 3.80^2 \cdot \,X=530.81 \cdot \,X \quad (kN \cdot m/m) \\ M\,y=P \cdot L\,x^2 \cdot \,Y=36.76 \times 3.80^2 \cdot \,Y=530.81 \cdot \,Y \quad (kN \cdot m/m)$ 

	ivi y			
			(	鉛直方向)
N	lo.	$P \times L x^2$	X	Мx
	(Î)	530.81	0.0000	0.00
ļ.	2	530, 81	-0.0011	-0.58
	(3)	530, 81	-0.0039	-2.07
	4)	530, 81	-0.0065	-3. 45
	(5)	530, 81	-0.0084	-4.46
I	6	530. 81	-0.0094	-4. 99
	(7)	530.81	-0.0095	-5. 04
	8	530, 81	-0.0087	-4. 62
	9	530. 81	-0.0069	-3, 66
	(10)	530. 81	-0.0039	-2. 07
	(11)	530. 81	0.0000	0.00
	(1)	530, 81	-0.0074	-3. 93
	2	530. 81	-0.0031	-1.65
	3	530. 81	-0.0011	-0. 58
	4	530. 81	-0.0010	-0.53
	5	530. 81	-0, 0014	-0.74
п	6	530. 81	-0.0014	-0. 96
	7	530.81	-0.0020	-1.06
	8	530.81	-0.0018	-0.96
	9	530. 81	-0.0012	-0.64
	10)	530.81	-0.0012	-1.65
	(1)	530.81	-0.0031	-12.47
	2		-0.0235	
		530. 81		-4. 30
	3	530. 81	0.0000	0.00
	4	530. 81	0.0037	1, 96 2, 71
ш	(5)	530. 81	0. 0051 0. 0055	
	6	530. 81		2. 92
	7	530. 81	0.0054	2. 87
	8	530, 81	0.0052	2. 76
	9	530. 81	0.0013	0.69
	1	530, 81	-0. 0387	-20. 54
	2	530, 81	-0.0141	-7. 48
	3	530. 81	-0.0005	-0. 27
IV	4	530. 81	0.0065	3. 45
	5	530. 81	0.0098	5. 20
	6	530, 81	0.0110	5. 84
	7	530, 81	0.0111 0.0078	5. 89
	8	530. 81		4. 14
	1	530. 81	-0.0497	-26.38
	2	530. 81	-0.0194	-10.30
17	3	530. 81	-0.0020	-1.06
V	4)	530. 81	0.0072	3. 82
	5	530. 81	0.0117	6. 21
	6	530. 81	0.0135	7. 17
	7	530. 81	0.0124	6. 58
	1	530. 81	-0.0558	-29. 62
	2	530. 81	-0.0231	-12. 26
VI	3	530. 81	-0,0043	-2, 28
	4)	530. 81	0.0056	2. 97
	5	530. 81	0.0104	5. 52
	6	530. 81	0.0123	6.53
	(1)	530. 81	-0.0566	-30.04
370	2	530. 81	-0.0248	-13. 16
VII	3	530. 81	-0.0072	-3.82
	(4)	530. 81	0.0015	0.80
	5	530. 81	0.0065	3. 45
	(1)	530. 81	-0.0515	-27. 34
VIII	(2)	530. 81	-0.0243	-12. 90
	(3)	530. 81	-0.0111	-5. 89
	4)	530. 81	-0.0035	-1.86
137	(1)	530, 81	-0.0406	-21.55
IX	2	530. 81	-0, 0221	-11. 73
	3	530. 81	-0.0137	-7. 27
X	(1)	530. 81	-0.0231	-12. 26
	2	530. 81	-0.0165	-8. 76
XI	(1)	530.81	0.0000	0.00

	.00.0	(	···/ ··· /	を立十年)
	r	DVI 2		<u>水平方向)</u>
IN	о.	$P \times L \times^2$	Y 0000	Му
	I	530. 81 530. 81	$\frac{0.0000}{-0.0011}$	0.00 -0.58
	. <u>П</u> Ш	530.81	-0.0039	-2. 07
				-2.07
	IV	530. 81	-0.0065	-3. 45
1	$\frac{V}{V}$	530. 81 530. 81	-0.0084 $-0.0094$	-4, 46 -4, 99
	VI VII	530. 81	-0.0094 $-0.0095$	-4. 99 -5. 04
	VII	530.81	-0.0093	-4. 62
	IX	530. 81	-0.0069	-4. 62 -3. 66
	$\frac{X}{X}$	530.81	-0.0039	-2. 07
	XI	530.81	0.0000	0, 00
	I	530.81	-0.0074	-3. 93
	ı II	530.81	-0.0031	-1. 65
	<u> </u>	530.81	-0.0031	-0. 58
	IV	530.81	-0.0010	-0.53
_	$\frac{1}{V}$	530. 81	-0.0014	-0.74
2	VI	530.81	-0.0014	-0. 96
	-VI	530. 81	-0.0020	-1.06
	VII	530.81	-0.0018	-0.96
	- IX	530.81	-0.0012	-0.64
	X	530.81	-0.0012	-1.65
	I	530. 81	-0. 0235	-12. 47
	Ī	530.81	-0.0081	-4. 30
	<u>III</u>	530. 81	0.0000	0.00
	IV	530.81	0.0037	1.96
3	$\overline{V}$	530. 81	0.0051	2.71
	VI	530.81	0.0055	2. 92
	VII	530. 81	0.0054	2. 87
	VIII	530. 81	0.0052	2.76
	IX	530.81	0.0013	0.69
	I	530.81	-0.0387	-20,54
	П	530. 81	-0.0141	-7.48
	Ш	530.81	-0.0005	-0.27
4	IV	530. 81	0.0065	3, 45
4)	$\mathbf{V}$	530. 81	0.0098	5.20
	VI	530.81	0.0110	5.84
	VII	530. 81	0.0111	5, 89
	VIII	530.81	0.0078	4. 14
	I	530.81	-0.0497	-26. 38
	Π	530.81	-0.0194	-10. 30
_	$_{\mathrm{III}}$	530.81	-0.0020	-1.06
(5)	, IV	530.81	0.0072	3, 82
	V_	530.81	0.0117	6. 21
	VI	530.81	0.0135	7. 17
	VII	530.81	0.0124	6. 58
	I	530. 81	-0.0558	-29.62
	<u>II</u>	530.81	-0.0231	-12. 26
6	Ш	530. 81	-0.0043	-2, 28
	IV	530. 81	0.0056	2. 97
	V	530. 81	0.0104	5. 52
	VI	530. 81	0.0123	6, 53
	I	530. 81	-0.0566	-30.04
(2)	_ <u>II</u>	530. 81	-0.0248	-13. 16
7	. III	530.81	-0.0072	-3.82
	IV V	530. 81	0.0015	0.80
	V I	530. 81 530. 81	0.0065	3. 45 -27. 34
			-0.0515 -0.0243	$\frac{-27.34}{-12.90}$
8	· II	530. 81	-0.0243	-12, 90 -5, 89
		530, 81 530, 81	-0.0111 -0.0035	
}	. IV I	530, 81 530, 81	-0. 0035 -0. 0406	-1. 86 -21. 55
9	$\frac{1}{\Pi}$	530.81	-0.0400	
				-11.73 $-7.27$
	<u>Ш</u> І	530. 81 530. 81	-0.0137 $-0.0231$	-12.26
10	. I	530.81	-0.0231 $-0.0165$	-12. 26 -8. 76
(1)	<u>п</u>	530.81	0.0000	0.00
(II)	1	000.01	0.0000	0.00

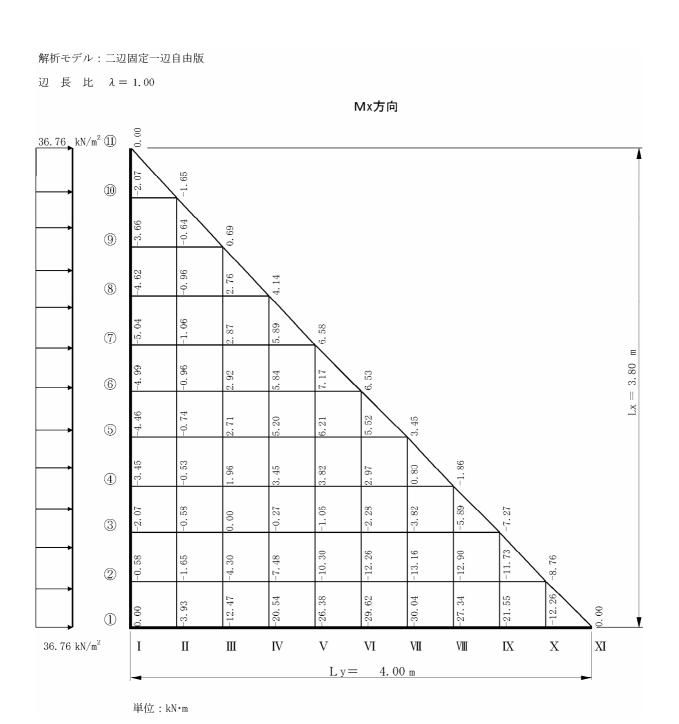



図 - 3.4.34 曲げモーメント Mx (港内側バットレス)

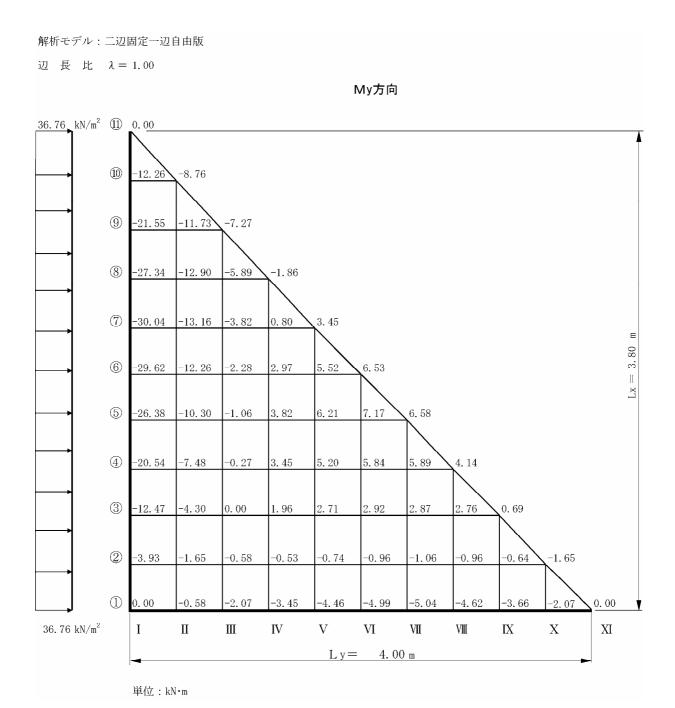



図 - 3.4.35 曲げモーメント My (港内側バットレス)

### 2) バットレスの軸方向に対する設計

a) 港外側バットレス 設計荷重は下図のとおり。

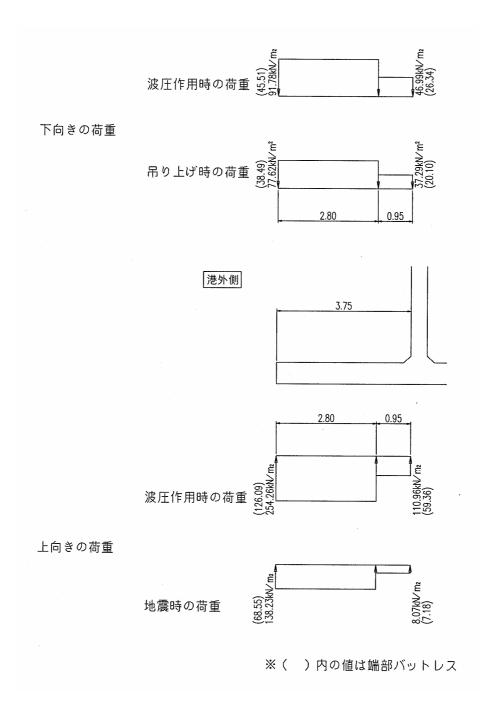



図 - 3.4.36 荷重図

曲げモーメントの算定は、下図の ~ の位置について、その位置ごとの曲げモーメントを片持ち梁として下式により算出する。

$$M(x) = \frac{W_1}{2} \cdot x^2 \quad (x \quad a)$$

$$M(x) = \frac{W_1 \cdot a}{2} \cdot (2x - a) + \frac{W_2}{2} \cdot (x - a)^2 \quad (x > a)$$

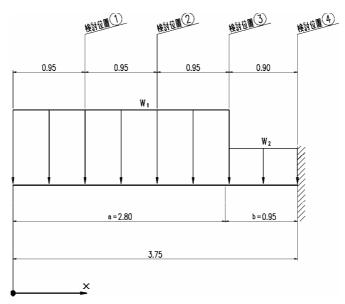



図 - 3.4.37 断面力算定モデル図

#### 上向きの荷重に対して

#### ・中央部バットレス

	W1	W2	х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	254.26	110.96	0.950	2.800	0.950	114.73	
   波圧作用時	254.26	110.96	1.900	2.800	0.950	458.94	
放压作用时	254.26	110.96	2.850	2.800	0.950	1032.43	
	254.26	110.96	3.750	2.800	0.950	1723.10	
	138.23	8.07	0.95	2.80	0.95	62.38	
地震時	138.23	8.07	1.90	2.80	0.95	249.51	
地震時	138.23	8.07	2.85	2.80	0.95	561.22	
	138.23	8.07	3.75	2.80	0.95	913.19	

# ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN∙m)	位置
	126.09	59.36	0.950	2.800	0.950	56.90	
   波圧作用時	126.09	59.36	1.900	2.800	0.950	227.59	
冰压压用时	126.09	59.36	2.850	2.800	0.950	512.00	
	126.09	59.36	3.750	2.800	0.950	856.46	
	68.55	7.11	0.95	2.80	0.95	30.93	
ᇸ	68.55	7.11	1.90	2.80	0.95	123.73	
地震時	68.55	7.11	2.85	2.80	0.95	278.32	
	68.55	7.11	3.75	2.80	0.95	454.27	

# 下向きの荷重に対して

### ・中央部バットレス

	W1	W2	Х	а	b	Mx	検討
吊り上げ時	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	77.62	37.29	0.95	2.80	0.95	35.03	
ᄝᄓᄔᆅᇠ	77.62	37.29	1.90	2.80	0.95	140.10	
しいカエいは	77.62	37.29	2.85	2.80	0.95	315.18	
	77.62	37.29	3.75	2.80	0.95	527.57	
	91.78	46.99	0.95	2.80	0.95	41.42	
*************************************	91.78	46.99	1.90	2.80	0.95	165.66	
波圧作用時	91.78	46.99	2.85	2.80	0.95	372.69	
	91.78	46.99	3.75	2.80	0.95	625.12	

### ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN∙m)	位置
	38.49	20.10	0.95	2.80	0.95	17.37	
   吊り上げ時	38.49	20.10	1.90	2.80	0.95	69.47	
山いていぬ	38.49	20.10	2.85	2.80	0.95	156.29	
	38.49	20.10	3.75	2.80	0.95	262.33	
	45.51	26.34	0.95	2.80	0.95	20.54	
沙丘佐田吐	45.51	26.34	1.90	2.80	0.95	82.15	
波圧作用時	45.51	26.34	2.85	2.80	0.95	184.80	
	45.51	26.34	3.75	2.80	0.95	311.34	

# b) 港内側バットレス 設計荷重は下図のとおり。

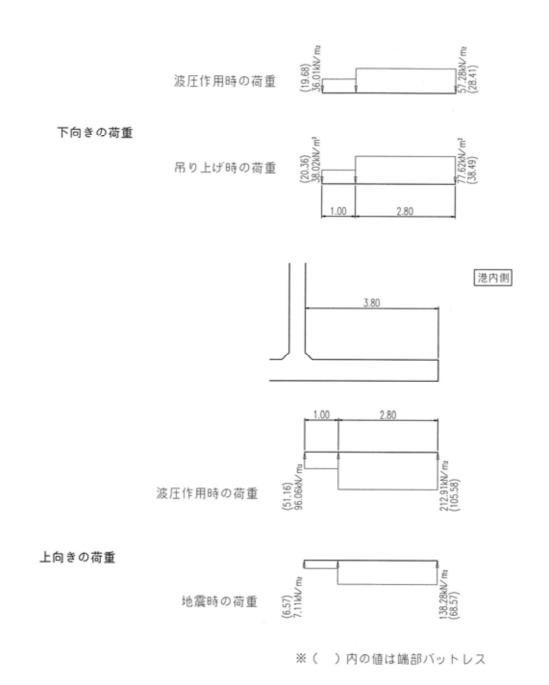



図 - 3.4.38 荷重図

曲げモーメントの算定は、下図の ~ の位置について、その位置ごとの曲げモーメントを片持ち梁として下式により算出する。

$$M(x) = \frac{W_1}{2} \cdot x^2 \quad (x \quad a)$$

$$M(x) = \frac{W_1 \cdot a}{2} \cdot (2x - a) + \frac{W_2}{2} \cdot (x - a)^2 \quad (x > a)$$

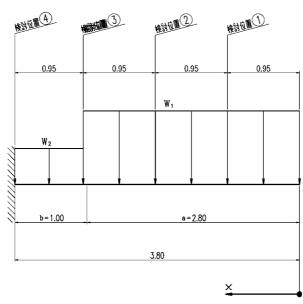



図 - 3.4.39 断面力算定モデル図

#### 上向きの荷重に対して

#### ・中央部バットレス

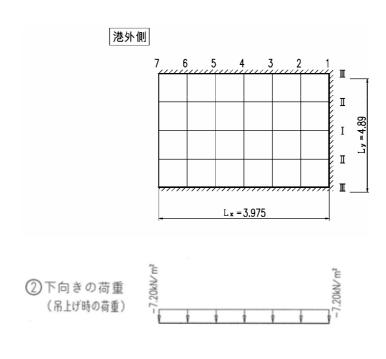
	W1	W2	Х	А	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN∙m)	位置
	212.91	96.09	0.95	2.80	1.00	96.08	
波圧作用時	212.91	96.09	1.90	2.80	1.00	384.30	
冰压压曲时	212.91	96.09	2.85	2.80	1.00	864.53	
	212.91	96.09	3.80	2.80	1.00	1478.80	
	138.28	7.11	0.95	2.80	1.00	62.40	
ᄬᄛᇠ	138.28	7.11	1.90	2.80	1.00	249.60	
地震時	138.28	7.11	2.85	2.80	1.00	561.43	
	138.28	7.11	3.80	2.80	1.00	932.80	

# ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN·m)	位置
	105.58	51.16	0.95	2.80	1.00	47.64	
   波圧作用時	105.58	51.16	1.90	2.80	1.00	190.57	
冰压压用时	105.58	51.16	2.85	2.80	1.00	428.72	
	105.58	51.16	3.80	2.80	1.00	735.08	
	68.57	6.57	0.95	2.80	1.00	30.94	
ᄬᆖ	68.57	6.57	1.90	2.80	1.00	123.77	
地震時	68.57	6.57	2.85	2.80	1.00	278.40	
	68.57	6.57	3.80	2.80	1.00	464.08	

# 下向きの荷重に対して

### ・中央部バットレス


	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	77.62	38.02	0.95	2.80	1.00	35.03	
   吊り上げ時	77.62	38.02	1.90	2.80	1.00	140.10	
ロハエいは	77.62	38.02	2.85	2.80	1.00	315.18	
	77.62	38.02	3.80	2.80	1.00	540.62	
	57.28	36.01	0.95	2.80	1.00	25.85	
沙丘佐田吐	57.28	36.01	1.90	2.80	1.00	103.39	
波圧作用時	57.28	36.01	2.85	2.80	1.00	232.60	
	57.28	36.01	3.80	2.80	1.00	402.93	

# ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	38.49	20.36	0.95	2.80	1.00	17.37	
┃ 吊り上げ時	38.49	20.36	1.90	2.80	1.00	69.47	
ロウエルは	38.49	20.36	2.85	2.80	1.00	156.29	
	38.49	20.36	3.80	2.80	1.00	268.83	
	28.41	19.68	0.95	2.80	1.00	12.82	
	28.41	19.68	1.90	2.80	1.00	51.28	
│波圧作用時 │	28.41	19.68	2.85	2.80	1.00	115.37	
	28.41	19.68	3.80	2.80	1.00	200.76	

### 3.4.2 使用限界状態

- (1) フーチング
  - 1) 底面反力による曲げモーメント
    - a) 港外側フーチング



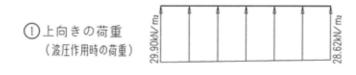



図 - 3.4.40 荷重図

### 上向き荷重による曲げモーメント(波圧作用時)

 $p_1 = 29.90 \text{kN/m}^2$   $p_2 = 28.62 \text{kN/m}^2$  (台形等分布荷重) = 0.75 , L x = 3.975m

P₁=28.62-29.62=-1.28kN/m² (三角形分布荷重)

 $M \times = P \cdot L \times^{2} \times X = -1.28 \times 3.975^{2} \times X = -20.22 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = -1.28 \times 3.975^2 \cdot Y = -20.22 \cdot Y \text{ (kN·m/m)}$ 

P₂=29.90kN/m² (等分布荷重)

 $M \times = P \cdot L x^2 \cdot X = 29.90 \times 3.975^2 \cdot X = 472.44 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = 29.90 \times 3.975^2 \cdot Y = 472.44 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

### 表 - 3.4.15 上向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

		$D1 \times L \times^2 D2 \times L \times^2$				Mx		<u> </u>
ΙN	Ο.			X				М×
		三角形	等分布	三角形  等分布		三角形	等分布	(kN•m)
		-20.22	472.44	-0.0519	-0.0990	1.05	-46.77	-45.72
		-20.22	472.44	-0.0067	-0.0258	0.14	-12.19	-12.05
		-20.22	472.44	0.0110	0.0080	-0.22	3.78	3.56
		-20.22	472.44	0.0137	0.0197	-0.28	9.31	9.03
		-20.22	472.44	0.0095	0.0198	-0.19	9.35	9.16
		-20.22	472.44	0.0038	0.0132	-0.08	6.24	6.16
		-20.22	472.44	0.0000	0.0000	0.00	0.00	0.00
		-20.22	472.44	-0.0348	-0.0602	0.70	-28.44	-27.74
		-20.22	472.44	-0.0030	-0.0145	0.06	-6.85	-6.79
		-20.22	472.44	0.0075	0.0049	-0.15	2.31	2.16
		-20.22	472.44	0.0080	0.0103	-0.16	4.87	4.71
		-20.22	472.44	0.0048	0.0088	-0.10	4.16	4.06
		-20.22	472.44	0.0013	0.0048	-0.03	2.27	2.24
		-20.22	472.44	0.0000	0.0000	0.00	0.00	0.00
		-20.22	472.44	0.0000	0.0000	0.00	0.00	0.00
		-20.22	472.44	-0.0024	-0.0035	0.05	-1.65	-1.60
		-20.22	472.44	-0.0053	-0.0101	0.11	-4.77	-4.66
		-20.22	472.44	-0.0066	-0.0156	0.13	-7.37	-7.24
		-20.22	472.44	-0.0065	-0.0195	0.13	-9.21	-9.08
		-20.22	472.44	-0.0058	-0.0227	0.12	-10.72	-10.60
		-20.22	472.44	0.0000	0.0000	0.00	0.00	0.00

(法線平行方向)

N	٥.	$P1 \times L x^2$	$P2 \times L x^2$		Y	М		Мy	
		三角形	等分布	三角形	等分布	三角形	等分布	(kN⋅m)	
		-20.22	472.44	-0.0087	-0.0165	0.18	-7.80	-7.62	
		-20.22	472.44	-0.0058	-0.0100	0.12	-4.72	-4.60	
		-20.22	472.44	0.0000	0.0000	0.00	0.00	0.00	
		-20.22	472.44	0.0020	0.0032	-0.04	1.51	1.47	
		-20.22	472.44	0.0016	0.0009	-0.03	0.43	0.40	
		-20.22	472.44	-0.0143	-0.0209	0.29	-9.87	-9.58	
		-20.22	472.44	0.0105	0.0236	-0.21	11.15	10.94	
		-20.22	472.44	0.0059	0.0093	-0.12	4.39	4.27	
		-20.22	472.44	-0.0317	-0.0606	0.64	-28.63	-27.99	
		-20.22	472.44	0.0155	0.0406	-0.31	19.18	18.87	
		-20.22	472.44	0.0070	0.0144	-0.14	6.80	6.66	
		-20.22	472.44	-0.0394	-0.0939	0.80	-44.36	-43.56	
		-20.22	472.44	0.0173	0.0531	-0.35	25.09	24.74	
		-20.22	472.44	0.0061	0.0173	-0.12	8.17	8.05	
		-20.22	472.44	-0.0389	-0.1172	0.79	-55.37	-54.58	
		-20.22	472.44	0.0174	0.0619	-0.35	29.24	28.89	
		-20.22	472.44	0.0047	0.0189	-0.10	8.93	8.83	
		-20.22	472.44	-0.0347	-0.1361	0.70	-64.30	-63.60	
		-20.22	472.44	0.0175	0.0688	-0.35	32.50	32.15	
		-20.22	472.44	0.0037	0.0205	-0.07	9.69	9.62	
		-20.22	472.44	-0.0260	-0.1477	0.53	-69.78	-69.25	

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

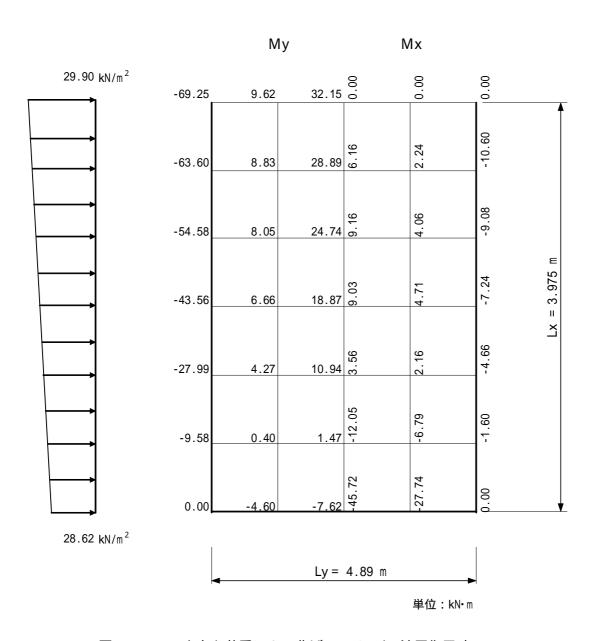



図 - 3.4.41 上向き荷重による曲げモーメント(波圧作用時)

### 下向き荷重による曲げモーメント(吊上げ時)

P = -7.20kN/m² (等分布荷重)

= 0.75 , Lx = 3.975m

 $M \times = P \cdot L x^{2} \cdot X = -7.20 \times 3.975^{2} \cdot X = -113.76 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -7.20 \times 3.975^2 \cdot Y = -113.76 \cdot Y \quad (kN \cdot m/m)$ 

### 表 - 3.4.16 下向き荷重による曲げモーメント(吊上げ時)

#### (法線直角方向)

( ):	去線	亚:	/二-	┢	台	١
( /7	<b>万 於水</b>	<del></del> -	11.	$\neg$		)

		(法級且用力円)				
No.	$P \times L x^2$	Χ	Mx			
	-113.76	-0.0990	11.26			
	-113.76	-0.0258	2.94			
	-113.76	0.0080	-0.91			
	-113.76	0.0197	-2.24			
	-113.76	0.0198	-2.25			
	-113.76	0.0132	-1.50			
	-113.76	0.0000	0.00			
	-113.76	-0.0602	6.85			
	-113.76	-0.0145	1.65			
	-113.76	0.0049	-0.56			
	-113.76	0.0103	-1.17			
	-113.76	0.0088	-1.00			
	-113.76	0.0048	-0.55			
	-113.76	0.0000	0.00			
	-113.76	0.0000	0.00			
	-113.76	-0.0035	0.40			
	-113.76	-0.0101	1.15			
	-113.76	-0.0156	1.77			
	-113.76	-0.0195	2.22			
	-113.76	-0.0227	2.58			
	-113.76	0.0000	0.00			

		(1-11131	<u> </u>
No.	$P \times L \times^2$	Υ	My
	-113.76	-0.0165	1.88
	-113.76	-0.0100	1.14
	-113.76	0.0000	0.00
	-113.76	0.0032	-0.36
	-113.76	0.0009	-0.10
	-113.76	-0.0209	2.38
	-113.76	0.0236	-2.68
	-113.76	0.0093	-1.06
	-113.76	-0.0606	6.89
	-113.76	0.0406	-4.62
	-113.76	0.0144	-1.64
	-113.76	-0.0939	10.68
	-113.76	0.0531	-6.04
	-113.76	0.0173	-1.97
	-113.76	-0.1172	13.33
	-113.76	0.0619	-7.04
	-113.76	0.0189	-2.15
	-113.76	-0.1361	15.48
	-113.76	0.0688	-7.83
	-113.76	0.0205	-2.33
	-113.76	-0.1477	16.80

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

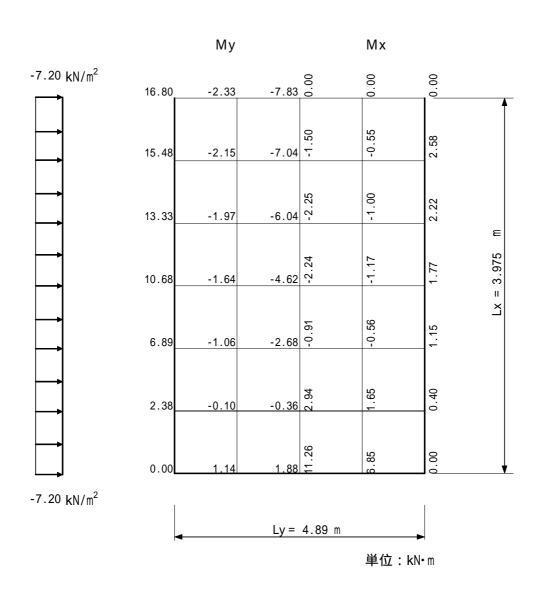



図 - 3.4.42 下向き荷重による曲げモーメント(吊上げ時)

# b) 港内側フーチング

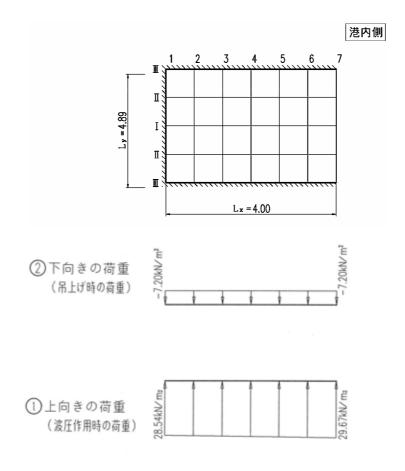



図 - 3.4.43 荷重図

### 上向き荷重による曲げモーメント(波圧作用時)

p₁ = 29.67kN/m² p₂ = 28.54kN/m² (台形等分布荷重)

= 0.75 , Lx = 4.00m

P₁=28.54 - 29.67 = -1.13kN/m² (三角形分布荷重)

 $M \times = P \cdot L x^2 \cdot X = -1.13 \times 4.00^2 \cdot X = -18.08 \cdot X \text{ (kN-m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = -1.13 \times 4.00^2 \cdot Y = -18.08 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

P₂ = 29.67kN/m² (等分布荷重)

 $M \times = P \cdot L \times^{2} \times X = 29.67 \times 4.00^{2} \times X = 474.72 \cdot X \text{ (kN·m/m)}$ 

 $M y = P \cdot L x^2 \cdot Y = 29.67 \times 4.00^2 \cdot Y = 474.72 \cdot Y \quad (kN \cdot m/m)$ 

#### 表 - 3.4.17 上向き荷重による曲げモーメント(波圧作用時)

(法線直角方向)

No.	P1×Lx ²	P2×Lx ²	)	Χ	М	Х	M x
	三角形	等分布	三角形	等分布	三角形	等分布	(kN•m)
	-18.08	474.72	-0.0519	-0.0990	0.94	-47.00	-46.06
	-18.08	474.72	-0.0067	-0.0258	0.12	-12.25	-12.13
	-18.08	474.72	0.0110	0.0080	-0.20	3.80	3.60
	-18.08	474.72	0.0137	0.0197	-0.25	9.35	9.10
	-18.08	474.72	0.0095	0.0198	-0.17	9.40	9.23
	-18.08	474.72	0.0038	0.0132	-0.07	6.27	6.20
	-18.08	474.72	0.0000	0.0000	0.00	0.00	0.00
	-18.08	474.72	-0.0348	-0.0602	0.63	-28.58	-27.95
	-18.08	474.72	-0.0030	-0.0145	0.05	-6.88	-6.83
	-18.08	474.72	0.0075	0.0049	-0.14	2.33	2.19
	-18.08	474.72	0.0080	0.0103	-0.14	4.89	4.75
	-18.08	474.72	0.0048	0.0088	-0.09	4.18	4.09
	-18.08	474.72	0.0013	0.0048	-0.02	2.28	2.26
	-18.08	474.72	0.0000	0.0000	0.00	0.00	0.00
	-18.08	474.72	0.0000	0.0000	0.00	0.00	0.00
	-18.08	474.72	-0.0024	-0.0035	0.04	-1.66	-1.62
	-18.08	474.72	-0.0053	-0.0101	0.10	-4.79	-4.69
	-18.08	474.72	-0.0066	-0.0156	0.12	-7.41	-7.29
	-18.08	474.72	-0.0065	-0.0195	0.12	-9.26	-9.14
	-18.08	474.72	-0.0058	-0.0227	0.10	-10.78	-10.68
	-18.08	474.72	0.0000	0.0000	0.00	0.00	0.00

(法線平行方向)

N	ο.	$P1 \times L x^2$	$P2 \times L x^2$		Y	М		Му	
		三角形	等分布	三角形	等分布	三角形	等分布	(kN•m)	
		-18.08	474.72	-0.0087	-0.0165	0.16	-7.83	-7.67	
		-18.08	474.72	-0.0058	-0.0100	0.10	-4.75	-4.65	
		-18.08	474.72	0.0000	0.0000	0.00	0.00	0.00	
		-18.08	474.72	0.0020	0.0032	-0.04	1.52	1.48	
		-18.08	474.72	0.0016	0.0009	-0.03	0.43	0.40	
		-18.08	474.72	-0.0143	-0.0209	0.26	-9.92	-9.66	
		-18.08	474.72	0.0105	0.0236	-0.19	11.20	11.01	
		-18.08	474.72	0.0059	0.0093	-0.11	4.41	4.30	
		-18.08	474.72	-0.0317	-0.0606	0.57	-28.77	-28.20	
		-18.08	474.72	0.0155	0.0406	-0.28	19.27	18.99	
		-18.08	474.72	0.0070	0.0144	-0.13	6.84	6.71	
		-18.08	474.72	-0.0394	-0.0939	0.71	-44.58	-43.87	
		-18.08	474.72	0.0173	0.0531	-0.31	25.21	24.90	
		-18.08	474.72	0.0061	0.0173	-0.11	8.21	8.10	
		-18.08	474.72	-0.0389	-0.1172	0.70	-55.64	-54.94	
		-18.08	474.72	0.0174	0.0619	-0.31	29.39	29.08	
		-18.08	474.72	0.0047	0.0189	-0.08	8.97	8.89	
		-18.08	474.72	-0.0347	-0.1361	0.63	-64.61	-63.98	
		-18.08	474.72	0.0175	0.0688	-0.32	32.66	32.34	
		-18.08	474.72	0.0037	0.0205	-0.07	9.73	9.66	
		-18.08	474.72	-0.0260	-0.1477	0.47	-70.12	-69.65	

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

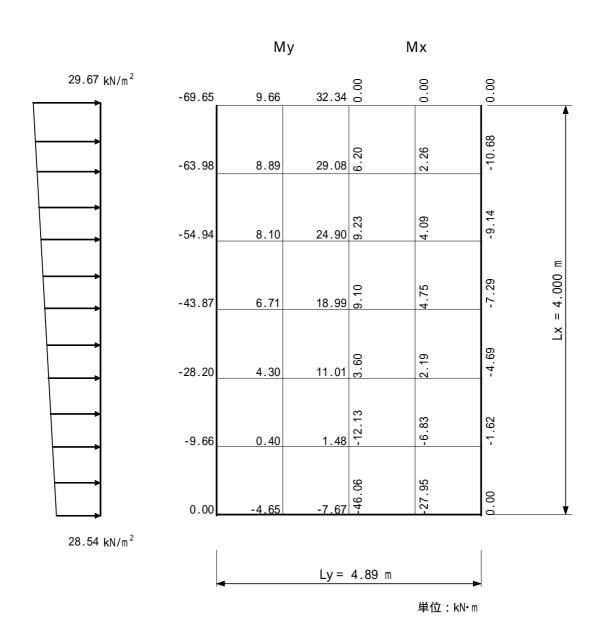



図 - 3.8.44 上向き荷重による曲げモーメント(波圧作用時)

### 下向き荷重による曲げモーメント(吊上げ時)

P = -7.20kN/m² (等分布荷重)

= 0.75 , Lx = 4.00m

 $M \times = P \cdot L x^2 \cdot X = -7.20 \times 4.00^2 \cdot X = -115.20 \cdot X \text{ (kN·m/m)}$ 

 $My = P \cdot Lx^2 \cdot Y = -7.20 \times 4.00^2 \cdot Y = -115.20 \cdot Y \text{ (kN} \cdot \text{m/m)}$ 

### 表 - 3.4.18 下向き荷重による曲げモーメント(吊上げ時)

#### (法線直角方向)

/ <b>\</b> _	<i>1.</i> —		/—	_	_	
/ <b>\</b> I	40	117	<b>'</b> —	ᆮ		١ ١
(法	#zk	-	1 I	л	101	. )

		(/公冰且用/月月				
No.	$P \times L x^2$	Χ	Mx			
	-115.20	-0.0990	11.40			
	-115.20	-0.0258	2.97			
	-115.20	0.0080	-0.92			
	-115.20	0.0197	-2.27			
	-115.20	0.0198	-2.28			
	-115.20	0.0132	-1.52			
	-115.20	0.0000	0.00			
	-115.20	-0.0602	6.94			
	-115.20	-0.0145	1.67			
	-115.20	0.0049	-0.56			
	-115.20	0.0103	-1.19			
	-115.20	0.0088	-1.01			
	-115.20	0.0048	-0.55			
	-115.20	0.0000	0.00			
	-115.20	0.0000	0.00			
	-115.20	-0.0035	0.40			
	-115.20	-0.0101	1.16			
	-115.20	-0.0156	1.80			
	-115.20	-0.0195	2.25			
	-115.20	-0.0227	2.62			
	-115.20	0.0000	0.00			
	·	·	·			

No.	$P \times L x^2$	Υ	My
	-115.20	-0.0165	1.90
	-115.20	-0.0100	1.15
	-115.20	0.0000	0.00
	-115.20	0.0032	-0.37
	-115.20	0.0009	-0.10
	-115.20	-0.0209	2.41
	-115.20	0.0236	-2.72
	-115.20	0.0093	-1.07
	-115.20	-0.0606	6.98
	-115.20	0.0406	-4.68
	-115.20	0.0144	-1.66
	-115.20	-0.0939	10.82
	-115.20	0.0531	-6.12
	-115.20	0.0173	-1.99
	-115.20	-0.1172	13.50
	-115.20	0.0619	-7.13
	-115.20	0.0189	-2.18
	-115.20	-0.1361	15.68
	-115.20	0.0688	-7.93
	-115.20	0.0205	-2.36
	-115.20	-0.1477	17.02

解析モデル:三辺固定一辺自由版

辺 長 比 : = 0.75

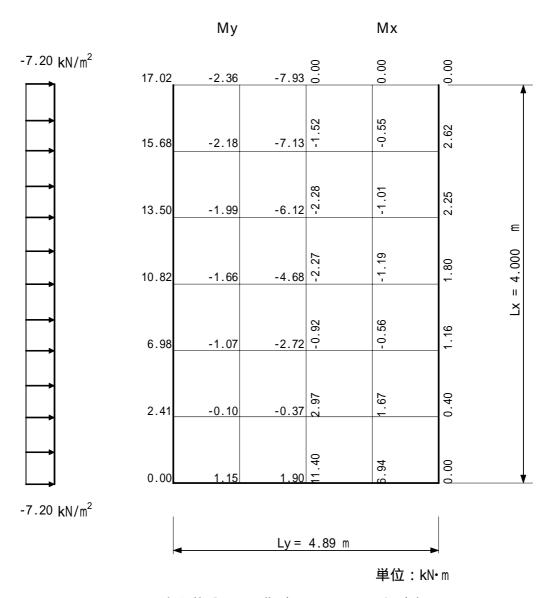



図 - 3.8.45 下向き荷重による曲げモーメント(吊上げ時)

#### 2) 杭頭モーメント及び軸力による曲げモーメント

算出された杭頭モーメント及び軸力による曲げモーメントを、底面反力による曲げモーメ ントの格子点番号(版の計算図表の格子点番号)に合わせ、以下のように想定する。

#### a) 港外側フーチング

【波圧作用時・法線直角方向】

106.58 5.73	-101.97 -4.11	106.58 5.73	-101.97 -4.11	106.58 3.87	-101.97 -2.77	106.58 5.73	-101.97 -4.11	106.58 5.73	-101.97	
106.58 5.73	-101.97 -4.11	106.58 5.73	-101.97 -4.11		-101.97 -2.77	106.58 5.73	-101.97 -4.11	106.58 5.73	-101.97 -4.11	
114.05 14.31	-119.20 -10.26	114.05 14.31	-119.20 -10.26	114.05 21.66	-119.20 -15.54	114.05	-119.20 -10.26	114.05	-119.20 -10.26	
114.05 14.31	-119.20 -10.26	114.05 14.31	-119.20 -10.26	114.05 21.66	-119.20 -15.54	114.05	-119.20 -10.26	114.05	-119.20 -10.26	_x = 3.975m
114.05 5.34	-119.20 -3.83	114.05	-119.20 -3.83	114.05 3.45	-119.20 -3.12	114.05	-119.20 -3.83	114.05	-119.20 -3.83	
24.30 9.93	-23.25 -13.84	24.30 9.93	-23.25 -13.84	24.30 12.95	-23.25 -18.05	24.30 9.93	-23.25 -13.84	24.30 9.93	-23.25 -13.84	
24.30 9.93	-23.25 -13.84	24.30 9.93	-23.25 -13.84	24.30 12.95	-23.25 -18.05	24.30 9.93	-23.25 -13.84	24.30 9.93	-23.25 -13.84	
	<b>←</b>			L y =	4.89m					

左側から 1 段目 ; 杭頭モーメントによる上側の曲げモーメント (+ M

2 段目 ; 軸力による上側の曲げモーメント ( + M )

; 杭頭モーメントによる下側の曲げモーメント( - M ; 軸力による下側の曲げモーメント( - M ) 3段目

4段目

図 - 3.4.46 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線直角方向)

【波圧作用時・法線平行方向】

76.24	76.24	42.20	76.24	76.24	
26.39	26.39	18.86	26.39	26.39	
-79.69	-79.69	-40.37	-79.69	-79.69	<b>A</b>
-36.78	-36.78	-13.53	-36.78	-36.78	
76.24	76.24	42.20	76.24	76.24	
26.39	26.39	18.86	26.39	26.39	
-79.69	-79.69	-40.37	-79.69	-79.69	
-36.78	-36.78	-13.53	-36.78	-36.78	
76.24	76.24	42.20	76.24	76.24	
31.28	31.28	23.66	31.28	31.28	
-79.69	-79.69	-40.37	-79.69	-79.69	
-43.60	-43.60	-16.97	-43.60	-43.60	
					_
49.19	49.19	20.49	49.19	49.19	.975m
31.28	31.28	23.66	31.28	31.28	6.
-47.07	-47.07	-21.41	-47.07	-47.07	≡ 3.
-43.60	-43.60	-16.97	-43.60	-43.60	×
					_
49.19	49.19	20.49	49.19	49.19	
21.13	21.13	14.44	21.13	21.13	
-47.07	-47.07	-21.41	-47.07	-47.07	
-29.45	-29.45	-10.36	-29.45	-29.45	
7.93	7.93	2.74	7.93	7.93	
2.06	2.06	2.01	2.06	2.06	
-7.59	-7.59	-2.86	-7.59	-7.59	
-2.86	-2.86	-1.44	-2.86	-2.86	
7.93	7.93	2.74	7.93	7.93	
2.06	2.06	2.01	2.06	2.06	
-7.59	-7.59	-2.86	-7.59	-7.59	
-2.86	-2.86	-1.44	-2.86	-2.86	
	_	L v =	4.89m	_	
+	_			-	

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.47 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線平行方向)

# b) 港内側フーチング

【波圧作用時・法線直角方向】

101.97	-106.58	-4.43	101.97	5.70	-106.58	-4.43	101.97	3.85	- 106.58	-2.99		101.97	5.70	-106.58	-4.43	101.97	5.70	-106.58	-4.43	_	1
101.97 5.70	-106.58	-4.43	101.97	5.70	-106.58	-4.43	101.97	3.85	-106.58	-2.99		101.97	5.70	-106.58	-4.43	101.97	5.70	- 106.58	-4.43		
119.20 14.24	-114.05	- 11 . 06	119.20	14.24	-114.05	-11.06	119.20	21.56	-114.05	-16.75		119.20	14.24	-114.05	-11.06	119.20	14.24	-114.05	-11.06		
119.20 14.24	-114.05	-11.06	119.20	14.24	-114.05	-11.06	119.20	21.56	-114.05	- 16 . 75		119.20	14.24	-114.05	-11.06	119.20	14.24	-114.05	-11.06		_ x = 4.00m
119.20 5.31	-114.05	-4.13	119.20	5.31	-114.05	-4.13	119.20	3.44	-114.05	-3.11		119.20	5.31	-114.05	-4.13	119.20	5.31	-114.05	-4.13		L× L
23.25	-24.30	-13.78	23.25	10.70	-24.30	-13.78	23.25	13.95	-24.30	-17.96		23.25	10.70	-24.30	-13.78	23.25	10.70	-24.30	-13.78		
23.25 10.70	-24.30	-13.78	23.25	10.70	-24.30	-13.78	23.25	13.95	-24.30	-17.96		23.25	10.70	-24.30	-13.78	23.25	10.70	-24.30	-13.78		
							Ly	/ =	4.	89n	n						-				

左側から 1 段目 ; 杭頭モーメントによる上側の曲げモーメント(+ M

2 段目 ; 軸力による上側の曲げモーメント ( + M )

3段目 ; 杭頭モーメントによる下側の曲げモーメント(-M

4段目 ; 軸力による下側の曲げモーメント ( - M )

図 - 3.4.48 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線直角方向)

【波圧作用時・法線平行方向】

79.69	79.69	40.37	79.69	79.69	
28.44	28.44	18.78	28.44	28.44	
-76.24	-76.24	-42.20	-76.24	-76.24	<b>A</b>
-36.61	-36.61	-14.59	-36.61	-36.61	
79.59	79.59	40.37	79.59	79.59	
28.44	28.44	18.78	28.44	28.44	
-76.24	-76.24	-42.20	-76.24	-76.24	
-36.61	-36.61	-14.59	-36.61	-36.61	
79.69	79.69	40.37	79.69	79.69	
33.72	33.72	23.55	33.72	33.72	
-76.24	-76.24	-42.20	-76.24	-76.24	
-43.40	-43.40	-18.29	-43.40	-43.40	
					_
47.07	47.07	41.41	47.07	47.07	O m
33.72	33.72	23.55	33.72	33.72	= 4.00m
-49.19	-49.19	-20.49	-49.19	-49.19	ii
-43.40	-43.40	-18.29	-43.40	-43.40	×
47.07	47.07	21.41	47.07	47.07	
22.77	22.77	14.37	22.77	22.77	
-49.19	-49.19	-20.49	-49.19	-49.19	
-29.32	-29.32	-11.17	-29.32	-29.32	
0			0	0	
7.59	7.59	2.86	7.59	7.59	
2.22	2.22	2.00	2.22	2.22	
-7.93	-7.93	-2.74	-7.93	-7.93	
-2.85	-2.85	-1.56	-2.85	-2.85	
7.59	7.59	2.86	7.59	7.59	
2.22	2.22	2.00	2.22	2.22	<b></b>
-7.93	-7.93	-2.74	-7.93	-7.93	,
-2.85	-2.85	-1.56	-2.85	-2.85	
	_	L y =	4.89m	_	
7					

上側から1段目; 杭頭モーメントによる上側の曲げモーメント(+M)

2段目; 軸力による上側の曲げモーメント(+M)

3段目; 杭頭モーメントによる下側の曲げモーメント(-M)

4段目; 軸力による下側の曲げモーメント(-M)

図 - 3.4.49 杭頭モーメント及び軸力による曲げモーメント(波圧作用時・法線平行方向)

#### 3) 設計曲げモーメント

フーチングでは、杭頭モーメント及び軸力による曲げモーメントが卓越して大きいため、 杭頭モーメント及び軸力による曲げモーメントが作用しない吊上げ時の値は、設計曲げモー メントから除外する。

よって、設計曲げモーメントは波圧作用時について、底面反力による曲げモーメントと杭 頭モーメント及び軸力による曲げモーメントを合算した値を採用値とする。

# a) 港外側フーチング 【波圧作用時】

表 - 3.4.19 設計曲げモーメント (波圧作用時)

(法線直角方向)

_								(141)	K且用刀凹)
					波圧が	F 用 時			
Ν	_	版計算	による	杭頭モーメ	ントによる	軸力に	こよる	設計曲げも	=_ < `, L
IN	٥.	曲げモー	-メント	曲げモー	-メント	曲げモー	-メント		- // /
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		11.26	-45.72	24.30	-23.25	12.95	-18.05	48.51	-87.02
		2.94	-12.05	24.30	-23.25	12.95	-18.05	40.19	-53.35
		3.56	-0.91	114.05	-119.20	3.45	-3.12	121.06	-123.23
		9.03	-2.24	114.05	-119.20	21.66	-15.54	144.74	-136.98
		9.16	-2.25	114.05	-119.20	21.66	-15.54	144.87	-136.99
		6.16	-1.50	106.58	-101.97	3.87	-2.77	116.61	-106.24
		0.00	0.00	106.58	-101.97	3.87	-2.77	110.45	-104.74
		6.85	-27.74	24.30	-23.25	9.93	-13.84	41.08	-64.83
		1.65	-6.79	24.30	-23.25	9.93	-13.84	35.88	-43.88
		2.16	-0.56	114.05	-119.20	5.34	-3.83	121.55	-123.59
		4.71	-1.17	114.05	-119.20	14.31	-10.26	133.07	-130.63
		4.06	-1.00	114.05	-119.20	14.31	-10.26	132.42	-130.46
		2.24	-0.55	106.58	-101.97	5.73	-4.11	114.55	-106.63
		0.00	0.00	106.58	-101.97	5.73	-4.11	112.31	-106.08
		0.00	0.00	24.30	-23.25	9.93	-13.84	34.23	-37.09
		0.40	-1.60	24.30	-23.25	9.93	-13.84	34.63	-38.69
		1.15	-4.66	114.05	-119.20	5.34	-3.83	120.54	-127.69
		1.77	-7.24	114.05	-119.20	14.31	-10.26	130.13	-136.70
		2.22	-9.08	114.05	-119.20	14.31	-10.26	130.58	-138.54
		2.58	-10.60	106.58	-101.97	5.73	-4.11	114.89	-116.68
		0.00	0.00	106.58	-101.97	5.73	-4.11	112.31	-106.08

(法線平行方向)

					波圧化	下 用 時			
N	ο.	版計算		杭頭モーメ		軸力は		設計曲げも	∃ーメント
	1	曲げモー		曲げモー		曲げモ-			
L.,		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		1.88	-7.62	2.74	-2.86	2.01	-1.44	6.63	-11.92
		1.14	-4.60	7.93	-7.59	2.06	-2.86	11.13	-15.05
		0.00	0.00	7.93	-7.59	2.06	-2.86	9.99	-10.45
		1.47	-0.36	2.74	-2.86	2.01	-1.44	6.22	-4.66
		0.40	-0.10	7.93	-7.59	2.06	-2.86	10.39	-10.55
		2.38	-9.58	7.93	-7.59	2.06	-2.86	12.37	-20.03
		10.94	-2.68	20.49	-21.41	14.44	-10.36	45.87	-34.45
		4.27	-1.06	49.19	-47.07	21.13	-29.45	74.59	-77.58
		6.89	-27.99	49.19	-47.07	21.13	-29.45	77.21	-104.51
		18.87	-4.62	20.49	-21.41	23.66	-16.97	63.02	-43.00
		6.66	-1.64	49.19	-47.07	31.28	-43.60	87.13	-92.31
		10.68	-43.56	49.19	-47.07	31.28	-43.60	91.15	-134.23
		24.74	-6.04	42.20	-40.37	23.66	-16.97	90.60	-63.38
		8.05	-1.97	76.24	-79.69	31.28	-43.60	115.57	-125.26
		13.33	-54.58	76.24	-79.69	31.28	-43.60	120.85	-177.87
		28.89	-7.04	42.20	-40.37	18.86	-13.53	89.95	-60.94
		8.83	-2.15	76.24	-79.69	26.39	-36.78	111.46	-118.62
		15.48	-63.60	76.24	-79.69	26.39	-36.78	118.11	-180.07
		32.15	-7.83		-40.37	18.86	-13.53	93.21	-61.73
		9.62	-2.33	76.24	-79.69	26.39	-36.78	112.25	-118.80
		16.80	-69.25		-79.69	26.39	-36.78	119.43	-185.72

### 【波圧作用時・法線直角方向】

	34.23	34.63	120.54	130.13	130.58	114.89	112.31
•	-37.09	-38.69	-127.69	-136.70	-138.54	-116.68	-106.08
	41.08	35.88	121.55	133.07	132.42	114.55	112.31
	-64.83	-43.88	-123.59	-130.63	-130.46	-106.63	-106.08
Ly	į.	9		,			i.
= 4.8	-87.02	40.19 -53.35	121.06 -123.23	144./4 -136.98	144.87 -136.99	-106.24	-104.74
89m							
	41.08	35.88	121.55	133.07	132.42	114.55	112.31
	-64.83	-43.88	-123.59	-130.63	-130.46	-106.63	-106.08
	34.23	34, 63	120.54	130.13	130,58	114.89	112.31
-	-37.09	-38.69	-127.69	-136.70	-138.54	-116.68	-106.08
	•		) = x	L x = 3.975m			
	-						

左側 ; 上側の曲げモーメント ( + M ) 右側 ; 下側の曲げモーメント ( - M )

図 - 3.4.50 設計曲げモーメント (波圧作用時・法線直角方向)

### 【波圧作用時・法線平行方向】

119.43	112.25	93.21	112.25	119.43	
-185.72	-118.80	-61.73	-118.80	-185.72	<b>A</b>
118.11	111.46	89.95	111.46	118.11	
-180.07	-118.62	-60.94	-118.62	-180.07	
120.85	115.57	90.60	115.57	120.85	
-177.87	-125.26	-63.38	-125.26	-177.87	
					E S
04.45	07.40	00.00	07.40	04.45	x = 3.975m
91.15 -134.23	87.13 -92.31	63.02 -43.00	87.13 -92.31	91.15 -134.23	.3.
104.20	02.01	40.00	02.01	104.20	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
77.21	74.59	45.87	74.59	77.21	
-104.51	-77.58	-34.45	-77.58	-104.51	
12.37	10.39	6.22	10.39	12.37	
-20.03	-10.55	-4.66	-10.55	-20.03	
9.99	11.13	6.63	11.13	9.99	
-10.45	-15.05	-11.92	-15.05	-10.45	
		L y =	4.89m		

上側;上側の曲げモーメント(+M) 下側;下側の曲げモーメント(-M)

図 - 3.4.51 設計曲げモーメント (波圧作用時・法線平行方向)

# b) 港内側フーチング 【波圧作用時】

表 - 3.4.20 設計曲げモーメント (波圧作用時)

(法線直角方向)

								(141)	<u> 聚且用刀凹)</u>
					波圧が	F 用 時			
No		版計算	による	杭頭モーメ	ントによる	軸力に	こよる	≐ੁੁ∓ੂੂੂੂੂੂੂੂ	=_ <>, L
INC	٠.	曲げモー	-メント	曲げモ-	-メント	曲げモー		設計曲げも	ニー人フト
		上側	下 側	上側	下 側	上側	下 側	上側	下 側
		11.40	-46.06	23.25	-24.30	13.95	-17.96	48.60	-88.32
		2.97	-12.13	23.25	-24.30	13.95	-17.96	40.17	-54.39
		3.60	-0.92	119.20	-114.05	3.44	-3.11	126.24	-118.08
		9.10	-2.27	119.20	-114.05	21.56	-16.75	149.86	-133.07
		9.23	-2.28	119.20	-114.05	21.56	-16.75	149.99	-133.08
		6.20	-1.52	101.97	-106.58	3.85	-2.99	112.02	-111.09
		0.00	0.00	101.97	-106.58	3.85	-2.99	105.82	-109.57
		6.94	-27.95	23.25	-24.30	10.70	-13.78	40.89	-66.03
		1.67	-6.83	23.25	-24.30	10.70	-13.78	35.62	-44.91
		2.19	-0.56	119.20	-114.05	5.31	-4.13	126.70	-118.74
		4.75	-1.19	119.20	-114.05	14.24	-11.06	138.19	-126.30
		4.09	-1.01	119.20	-114.05	14.24	-11.06	137.53	-126.12
		2.26	-0.55	101.97	-106.58	5.70	-4.43	109.93	-111.56
		0.00	0.00	101.97	-106.58	5.70	-4.43	107.67	-111.01
		0.00	0.00	23.25	-24.30	10.70	-13.78	33.95	-38.08
		0.40	-1.62	23.25	-24.30	10.70	-13.78	34.35	-39.70
		1.16	-4.69	119.20	-114.05	5.31	-4.13	125.67	-122.87
		1.80	-7.29	119.20	-114.05	14.24	-11.06	135.24	-132.40
		2.25	-9.14	119.20	-114.05	14.24	-11.06	135.69	-134.25
		2.62	-10.68	101.97	-106.58	5.70	-4.43	110.29	-121.69
		0.00	0.00	101.97	-106.58	5.70	-4.43	107.67	-111.01

(法線平行方向)

				波圧が	F 用 時		,	3 1 1373137
NI.	版計算	による	杭頭モーメ	ントによる	軸力に	こよる	÷Д≑⊥₩₁₽°т	- 45.1
No.	曲げモー	-メント	曲げモー	-メント	曲げモー		設計曲げも	ニーメント
	上側	下 側	上側	下 側	上側	下 側	上側	下 側
	1.90	-7.67	2.86	-2.74	2.00	-1.56	6.76	-11.97
	1.15	-4.65	7.59	-7.93	2.22	-2.85	10.96	-15.43
	0.00	0.00	7.59	-7.93	2.22	-2.85	9.81	-10.78
	1.48	-0.37	2.86	-2.74	2.00	-1.56		-4.67
	0.40	-0.10	7.59	-7.93	2.22	-2.85		-10.88
	2.41	-9.66	7.59	-7.93	2.22	-2.85	12.22	-20.44
	11.01	-2.72	21.41	-20.49	14.37	-11.17	46.79	-34.38
	4.30	-1.07	47.07	-49.19	22.77	-29.32	74.14	-79.58
	6.98	-28.20	47.07	-49.19	22.77	-29.32	76.82	-106.71
	18.99	-4.68	21.41	-20.49	23.55	-18.29	63.95	-43.46
	6.71	-1.66	47.07	-49.19	33.72	-43.40	87.50	-94.25
	10.82	-43.87	47.07	-49.19	33.72	-43.40	91.61	-136.46
	24.90	-6.12	40.37	-42.20	23.55	-18.29	88.82	-66.61
	8.10	-1.99	79.69	-76.24	33.72	-43.40	121.51	-121.63
	13.50	-54.94	79.69	-76.24	33.72	-43.40	126.91	-174.58
	29.08	-7.13	40.37	-42.20	18.78	-14.59	88.23	-63.92
	8.89	-2.18	79.69	-76.24	28.44	-36.61	117.02	-115.03
	15.68	-63.98	79.69	-76.24	28.44	-36.61	123.81	-176.83
	32.34	-7.93	40.37	-42.20	18.78	-14.59	91.49	-64.72
	9.66	-2.36	79.69	-76.24	28.44	-36.61	117.79	-115.21
	17.02	-69.65	79.69	-76.24	28.44	-36.61	125.15	-182.50

### 【波圧作用時・法線直角方向】

107.67	107.67	-111.01	105.82	-109.57	107.67	-111.01	107.67	-111.01	
110.29	109.93	-111.56	112.02	-111.09	109.93	-111.56	110.29	- 121.69	
135.69 -134.25	137.53	-126.12	149.99	- 133.08	137.53	-126.12	135.69	-134.25	
135.24 -132.40	138.19	-126.30	149.86	-133.07	138.19	-126.30	135.24	-132.40	L x = 4.00m
125.67 -122.87	126.70	-118.74	126.24	-118.08	126.70	-118.74	125.67	-122.87	<u>*</u>
34.35 -39.70	35.62	-44.91	40.17	-54.39	35.62	-44.91	34.35	-39.70	
33.95 -38.08	40.89	-66.03	48.60	-88.32	40.89	-66.03	33.95	-38.08	
			L y =	4 . 891	m				

左側 ; 上側の曲げモーメント ( + M ) 右側 ; 下側の曲げモーメント ( - M )

図 - 3.4.52 設計曲げモーメント (波圧作用時・法線直角方向)

### 【波圧作用時・法線平行方向】

125.15	117.79	91.49	117.79	125.15	
-182.50	-115.21	-64.72	-115.21	-182.50	<b>A</b>
123.81	117.02	88.23	117.02	123.81	
-176.83	-115.03	-63.92	-115.03	-176.83	
126.91	121.51	88.82	121.51	126.91	
-174.58	-121.63	-66.61	-121.63	-174.58	
91.61	87.50	63.95	87.50	91.61	9.
-136.46	-94.25	-43.46	-94.25	-136.46	L x = 4.00m
76.82	74.14	46.79	74.14	76.82	
-106.71	-79.58	-34.38	-79.58	-106.71	
12.22 -20.44	10.21	6.34	10.21	12.22	
-20.44	-10.88	-4.67	-10.88	-20.44	
9.81	10.96	6.76	10.96	9.81	
-10.78	-15.43	-11.97	-15.43	-10.78	
		L y =	4.89m		
- 1	_			_	

上側;上側の曲げモーメント(+M) 下側;下側の曲げモーメント(-M)

図 - 3.4.53 設計曲げモーメント (波圧作用時・法線平行方向)

# (2) バットレス

- 1) バットレスに対して垂直に作用する波圧による曲げモーメント
  - a) 港外側バットレス

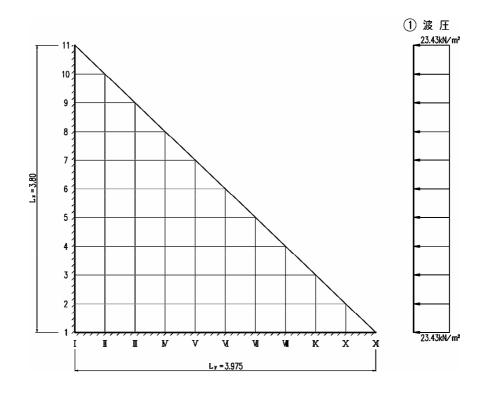



図 - 3.4.54 断面力算定モデル図

P = 23.43kN/m² (等分布荷重) = 1.00 , Lx = 3.80m Mx = P·Lx²·X = 23.43×3.80²·X = 338.33·X (kN·m/m) My = P·Lx²·Y = 23.43×3.80²·Y = 338.33·Y (kN·m/m)

	ıvı y			
			(	鉛直方向)
N	lo.	$P \times L x^2$	X	Mx
-	(1)	338. 33	0.0000	0.00
	2	338. 33	-0.0011	-0.37
	(3)	338, 33	-0.0039	-1. 32
	4	338, 33	-0.0065	-2. 20
	(5)	338, 33	-0, 0084	-2.84
I	6	338, 33	-0.0094	-3. 18
1	7			
		338. 33	-0.0095	-3. 21
	8	338. 33	-0.0087	-2. 94
	9	338. 33	-0.0069 -0.0039	-2.33
	(10)	338. 33		-1.32
	(1)	338. 33	0.0000	0.00
	(1)	338. 33	-0.0074	-2. 50
	2	338. 33	-0.0031	-1. 05
	3	338. 33	-0.0011	-0.37
	4)	338. 33	-0.0010	-0.34
l n	5	338. 33	-0.0014	-0.47
"	6	338. 33	-0.0018	-0. 61
	7	338.33	-0.0020	-0.68
	8	338, 33	-0.0018	-0.61
	9	338, 33	-0.0012	-0.41
	10	338. 33	-0.0031	-1.05
	1	338. 33	-0.0235	-7. 95
	2	338. 33	-0.0081	-2.74
	3	338. 33	0.0000	0.00
	4	338, 33	0.0037	1, 25
Ш	(5)	338, 33	0.0051	1. 73
	6	338. 33	0.0055	1.86
	(7)	338. 33	0.0054	1.83
	(8)	338, 33	0.0052	1. 76
	9	338. 33	0.0013	0.44
	(Ī)	338. 33	-0. 0387	-13. 09
	2	338. 33	-0.0141	-4. 77
	3	338. 33	-0.0005	-0.17
	4)	338. 33	0.0065	2. 20
IV	(5)	338, 33	0.0098	3. 32
	6	338. 33	0.0110	3. 72
	Õ	338, 33	0.0111	3, 76
	8	338, 33	0.0078	2. 64
	(Ī)	338. 33	-0.0497	-16.82
	2	338, 33	-0. 0194	-6. 56
	3	338. 33	-0.0020	-0.68
V	4	338. 33	0.0072	2. 44
'	(5)	338. 33	0.0012	3. 96
	6	338. 33	0.0117	4.57
	7	338. 33	0.0133	4. 20
	1	338. 33	-0.0558	-18.88
	2	338. 33	-0.0231	-7. 82
	3	338. 33	-0.0043	-1. 45
VI	4	338.33	0.0056	1. 89
	5	338. 33	0.0104	3. 52
	(6) (T)	338. 33	0.0123	4. 16 -19. 15
	(1)	338, 33 338, 33	-0.0566	
370	2		-0.0248	-8.39
VII	3	338. 33	-0.0072	-2. 44
	4)	338. 33	0.0015	0.51
	5	338. 33	0.0065	2. 20
	(1)	338. 33	-0, 0515	-17, 42
VIII	2	338. 33	-0.0243	-8. 22
	3	338. 33	-0.0111	-3. 76
	4	338. 33	-0.0035	-1.18
	(1)	338. 33	-0.0406	-13.74
IX	2	338. 33	-0, 0221	-7, 48
	3	338. 33	-0.0137	-1.64
X	(1)	338. 33	-0.0231	-7. 82
	2	338. 33	-0.0165	-5. 58
XI	1	338. 33	0.0000	0.00

1 – 3	338.3	3° Y (KN	• m/m)	
			(	水平方向)
N	о.	$P \times L x^2$	Y	My
11	I.	338. 33	0.0000	0.00
	$\overline{\Pi}$	338, 33	-0.0011	-0.37
		338.33	-0.0039	-1.32
	IV	338. 33	-0.0065	-2.20
	V	338. 33	-0.0084	-2.84
1	VI	338. 33	-0.0094	-3. 18
	VII	338. 33	-0.0095	-3.21
	VIII	338.33	-0.0087	-2.94
	_ IX	338. 33	-0.0069	-2.33
	X	338.33	-0.0039	-1.32
	XI	338. 33	0.0000	0.00
	I	338. 33	-0.0074	-2.50
	$-\frac{\Pi}{\Pi}$	338.33	-0.0031	-1.05
	. III	338.33	-0.0011	-0.37
	IV	338.33	-0.0010	-0.34
2	. V	338. 33	-0.0014	-0.47
	<u>VI</u> _	338. 33	-0.0018	-0.61
	VII VIII	338. 33	-0.0020	-0.68
	<u>VI</u> I	338, 33 338, 33	-0.0018 -0.0012	-0.61
	$_{ m X}^{ m IX}$	338.33	-0.0012 $-0.0031$	-0. 41 -1. 05
	I	338.33	-0.0031	-7. 95
	Ī	338. 33	-0.0081	-2. 74
		338.33	0.0000	0.00
	IV	338. 33	0.0037	1. 25
3	$\overline{V}$	338.33	0.0051	1.73
	$\dot{ ext{VI}}$	338.33	0.0055	1.86
	VII	338, 33	0.0054	1, 83
	VIII	338.33	0.0052	1.76
	IX	338. 33	0.0013	0.44
	I	338, 33	-0.0387	-13.09
	П	338. 33	-0.0141	-4.77
	Ш	338.33	-0.0005	-0.17
<b>(4)</b>	IV	338. 33	0.0065	2.20
•	V	338. 33	0, 0098	3.32
	VI	338. 33	0.0110	3. 72
	VII	338. 33	0.0111	3, 76
	VIII	338. 33	0.0078	2.64
	_ <u>I</u>	338. 33	-0.0497	-16. 82
	П	338.33	-0.0194	-6. 56
(5)	<u> </u>	338. 33	-0.0020	-0.68
(3)	. IV V	338.33 338.33	0. 0072 0. 0117	2, 44 3, 96
	$\frac{\mathbf{v}}{\text{VI}}$	338.33	0.0117	4. 57
	· VII	338.33	0.0133	4. 20
	I	338.33	-0.0558	-18.88
	Ī	338. 33	-0.0231	-7. 82
<u>@</u>	<u> </u>	338. 33	-0.0043	-1, 45
6	ĪV	338.33	0.0056	1.89
	V	338. 33	0. 0104	3. 52
	VI	338. 33	0.0123	4, 16
	I	338. 33	-0.0566	-19. 15
	$\Pi$	338. 33	-0.0248	-8.39
7		338.33	-0.0072	-2.44
	IV	338. 33	0.0015	0.51
	V	338.33	0.0065	2. 20
	I	338. 33	-0.0515	-17.42
8	II	338. 33	-0.0243	-8.22
9	III	338. 33	-0.0111	-3. 76
	. IV	338. 33	-0.0035	-1.18
_	I	338.33	-0.0406	-13.74
9	Π	338. 33	-0.0221	-7. 48
	Ш	338.33	-0.0137	-1.61
10	. <u>I</u>	338. 33	-0.0231	-7.82
	<u> I</u>	338.33	-0.0165	-5. 58
(1)	I	338. 33	0.0000	0.00

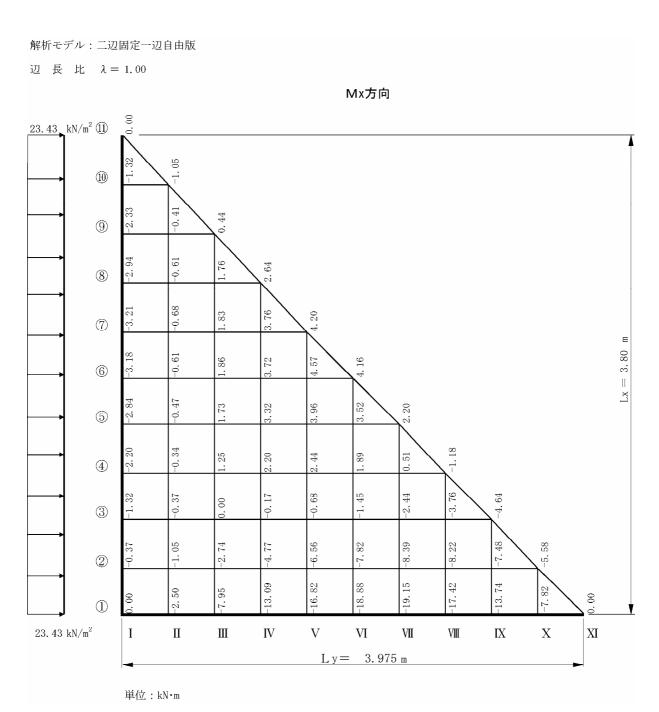



図 - 3.4.55 曲げモーメント Mx

#### My方向

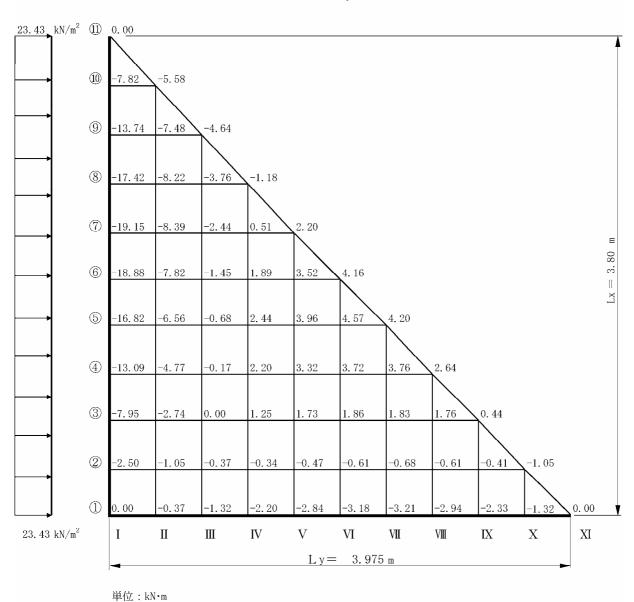
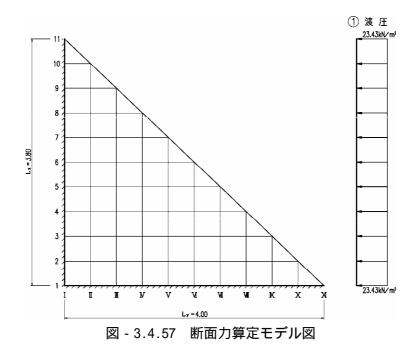




図 - 3.4.56 曲げモーメント My

# b) 港内側バットレス



 $P = 23.43 \text{kN/m}^2 \quad (等分布荷重)$   $= 1.00 \quad , \quad L \, x = 3.80 \text{m}$   $M \, x = P \cdot L \, x^2 \cdot \, X = 23.43 \times 3.80^2 \cdot \, X = 338.33 \cdot \, X \quad (\text{kN·m/m})$   $M \, y = P \cdot L \, x^2 \cdot \, Y = 23.43 \times 3.80^2 \cdot \, Y = 338.33 \cdot \, Y \quad (\text{kN·m/m})$ 

	,		(鉛直方向)				
ν.	T	$P \times L x^2$					
IN	lo.	PXLX	X	Mx			
	1	338. 33	0.0000	0.00			
	2	338. 33	-0.0011	-0.37			
	3	338. 33	-0.0039	-1.32			
	(4)	338, 33	-0.0065	-2.20			
	(5)	338. 33	-0.0084	-2.84			
I	6	338, 33	-0.0094	-3. 18			
	(7)	338. 33	-0.0095	-3.21			
	(8)	338, 33	-0.0087	-2. 94			
	(9)	338. 33	-0.0069	-2.33			
	(10)	338. 33	-0.0039	-1. 32			
	(11)	338. 33	0.0000	0.00			
	(1)	338.33	-0.0074	-2.50			
	2						
		338. 33	-0.0031	-1.05			
	3	338. 33	-0.0011	-0.37			
	(4)	338. 33	-0.0010	-0.34			
П	(5)	338. 33	-0.0014	-0.47			
ш	6	338. 33	-0. 0018	-0. 61			
	7	338. 33	-0.0020	-0.68			
	(8)	338, 33	-0.0018	-0.61			
	9	338, 33	-0.0012	-0.41			
	(10)	338. 33	-0.0031	-1.05			
	(1)	338. 33	-0. 0235	-7. 95			
	2	338. 33	-0.0081	-2.74			
	3	338. 33	0.0000	0.00			
		1					
тт	4)	338, 33	0, 0037	1, 25			
Ш	5	338. 33	0.0051	1. 73			
	6	338. 33	0.0055	1.86			
	7	338. 33	0.0054	1.83			
	8	338, 33	0.0052	1. 76			
	9	338.33	0.0013	0.44			
	1	338. 33	-0.0387	-13.09			
	(2)	338. 33	-0.0141	-4.77			
	(3)	338. 33	-0.0005	-0.17			
	4	338. 33	0.0065	2. 20			
IV	(5)	338, 33	0.0098	3. 32			
	6	338. 33	0.0110	3. 72			
	7	338, 33	0.0110	3, 76			
	8	338. 33	0.0078	2.64			
	1	1					
		338. 33	-0.0497	-16.82			
	2	338. 33	-0.0194	-6. 56			
	3	338. 33	-0.0020	-0.68			
V	4	338. 33	0.0072	2.44			
	5	338. 33	0.0117	3. 96			
	6	338. 33	0.0135	4.57			
	7	338. 33	0.0124	4. 20			
	1	338. 33	-0.0558	-18.88			
	2	338. 33	-0.0231	-7.82			
<b>1</b> 7 T	3	338. 33	-0.0043	-1, 45			
VI	(4)	338. 33	0.0056	1.89			
	5	338. 33	0.0104	3. 52			
	6	338. 33	0.0104	4, 16			
	(I)	338. 33	-0.0566	-19. 15			
	2	338. 33	-0.0300	-19. 13 -8. 39			
VII				_9 44			
VII	3	338. 33	-0.0072	-2.44			
	4	338. 33	0.0015	0.51			
	5	338. 33	0.0065	2. 20			
	(1)	338. 33	-0, 0515	-17. 42			
VIII	2	338. 33	-0.0243	-8. 22			
	3	338. 33	-0.0111	-3. 76			
	4	338. 33	-0.0035	-1.18			
		338, 33	-0.0406	-13.74			
	(1)			7. 10			
			-0.0221	- (. 48			
IX	2	338. 33	-0. 0221 -0. 0137	-7. 48 -4. 64			
IX	② ③	338, 33 338, 33	-0.0137	-4.64			
	② ③ ①	338. 33 338. 33 338. 33	-0. 0137 -0. 0231	-1. 64 -7. 82			
IX	② ③	338, 33 338, 33	-0.0137	-4.64			

			(.	水平方向)
N	0.	$P \times L x^2$	Y	My
	I	338. 33	0.0000	0.00
	П	338, 33	-0.0011	-0.37
	Ш	338. 33	-0.0039	-1.32
	IV	338. 33	-0.0065	-2. 20
	V	338. 33	-0.0084	-2.84
1	VI	338, 33	-0.0094	-3. 18
	VII	338. 33	-0.0095	-3. 21
	VIII	338.33	-0.0087	-2.94
	IX	338. 33	-0.0069	-2.33
	X	338. 33	-0.0039	-1. 32
	_XI	338. 33	0.0000	0.00
	I	338.33	-0.0074	-2.50
		338.33	-0.0031	-1.05
	Ш.	338.33	-0.0011	-0.37
	<u>IV</u>	338.33	-0.0010	-0.34
2	V	338. 33	-0.0014	-0.47
_	$\frac{VI}{VII}$	338. 33	-0.0018	-0.61
	VII	338.33	-0.0020	-0.68
	<u>VII</u>	338. 33	-0.0018 -0.0012	-0. 61 -0. 41
	IX V	338.33 338.33		
-	<u>X</u>	338.33	-0.0031 $-0.0235$	-1.05 $-7.95$
	I	338. 33	-0.0235 $-0.0081$	-7.95 -2.74
	$\frac{\Pi}{\Pi}$	338.33	0.0000	$\frac{-2.74}{0.00}$
	ΙV	338.33	0.0000	1. 25
3	V	338.33	0.0051	1. 73
	Ϋ́Ι	338. 33	0.0055	1. 86
	VI	338. 33	0.0054	1, 83
	VII	338. 33	0.0052	1. 76
	IX	338. 33	0.0013	0.44
	I	338. 33	-0. 0387	-13. 09
	$\bar{\Pi}$	338. 33	-0.0141	-4. 77
	Ī	338. 33	-0.0005	-0.17
4	IV	338. 33	0.0065	2, 20
4)	V	338, 33	0.0098	3.32
	VI	338.33	0.0110	3.72
	VII	338. 33	0.0111	3, 76
	VIII	338. 33	0.0078	2.64
	I	338. 33	-0.0497	-16.82
	Π	338. 33	-0.0194	-6. 56
		338. 33	-0.0020	-0.68
(5)	IV	338. 33	0.0072	2, 44
	<u>V</u> _	338.33	0.0117	3. 96
İ	VI	338.33	0.0135	4. 57
	<u>VII</u>	338.33	0.0124	4. 20
	I	338. 33	-0.0558	-18. 88
	<u>II</u>	338. 33	-0.0231	-7.82
6	. III IV	338, 33 338, 33	-0. 0043 0. 0056	-1, 45
	$\frac{1V}{V}$	338.33	0.0006	1. 89 3. 52
	V	338.33	0.0104	3. 32 4. 16
	I	338. 33	-0. 0566	-19. 15
	Π	338. 33	-0. 0248	-8. 39
7		338. 33	-0.0072	-2.44
	ĪV	338. 33	0.0012	0. 51
	V	338. 33	0.0065	2. 20
	İ	338. 33	-0.0515	-17.42
	Ī	338. 33	-0.0243	-8, 22
8	III	338. 33	-0.0111	-3. 76
	IV	338, 33	-0.0035	-1.18
	I	338.33	-0.0406	-13.74
9	<u> </u>	338. 33	-0.0221	-7.48
	Ш	338. 33	-0.0137	-1.64
10	I	338. 33	-0.0231	-7.82
	Π	338. 33	-0.0165	-5.58
(1)	I	338. 33	0.0000	0.00

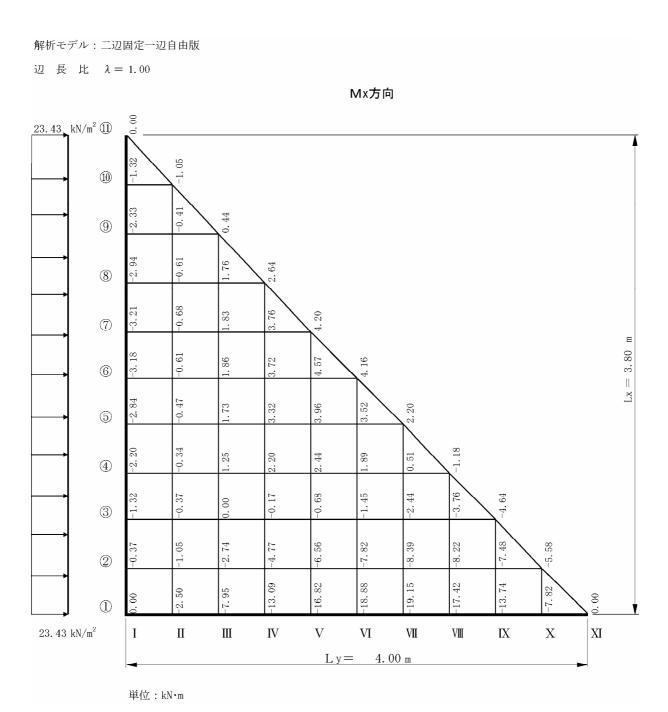



図 - 3.4.58 曲げモーメント Mx

解析モデル:二辺固定一辺自由版

辺 長 比  $\lambda = 1.00$ 

#### My方向

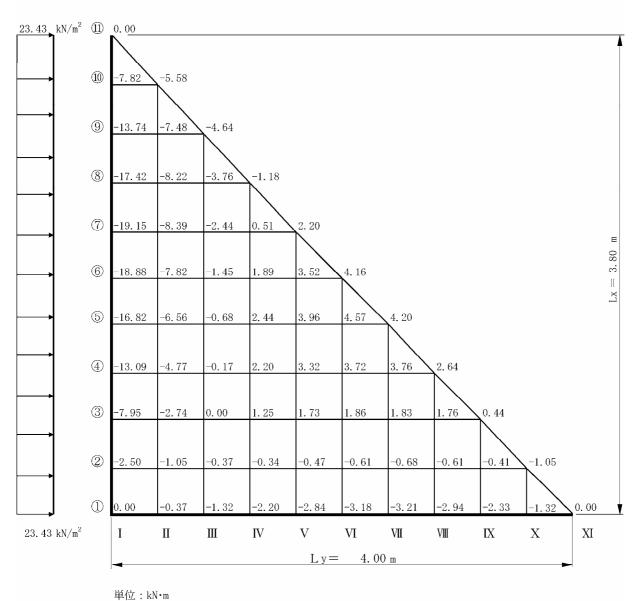
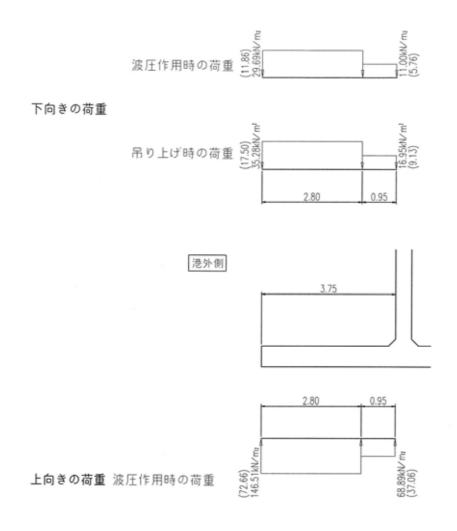




図 - 3.4.59 曲げモーメント My

### 2) バットレスの軸方向に対する設計

a) 港外側バットレス 設計荷重は下図のとおり。



※( )内の値は端部バットレス

図 - 3.4.60 荷重図

曲げモーメントの算定は、下図の ~ の位置について、その位置ごとの曲げモーメントを片持ち梁として下式により算出する。

$$M(x) = \frac{W_1}{2} \cdot x^2 \quad (x \quad a)$$

$$M(x) = \frac{W_1 \cdot a}{2} \cdot (2x - a) + \frac{W_2}{2} \cdot (x - a)^2 \quad (x > a)$$

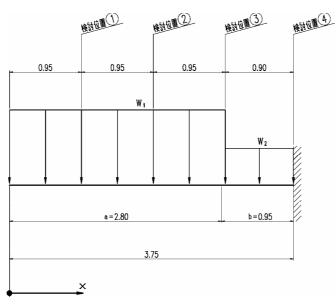



図 - 3.4.61 断面力算定モデル図

#### 上向きの荷重に対して

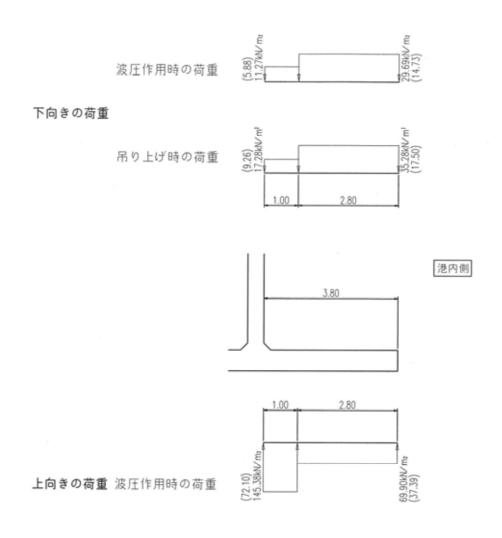
#### ・中央部バットレス

	W <b>1</b>	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	146.51	68.89	0.95	2.80	0.95	66.11	
沙广作用吐	146.51	68.89	1.90	2.80	0.95	264.45	
波圧作用時 ·	146.51	68.89	2.85	2.80	0.95	594.92	
	146.51	68.89	3.75	2.80	0.95	995.12	

#### ・端部バットレス

	W <b>1</b>	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN∙m)	位置
	72.66	37.06	0.95	2.80	0.95	32.79	
   波圧作用時	72.66	37.06	1.90	2.80	0.95	131.15	
<i>液</i>	72.66	37.06	2.85	2.80	0.95	295.05	
	72.66	37.06	3.75	2.80	0.95	494.83	

# 下向きの荷重に対して


# ・中央部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	35.28	16.95	0.95	2.80	0.95	15.92	
┃ 吊り上げ時	35.28	16.95	1.90	2.80	0.95	63.68	
いっている	35.28	16.95	2.85	2.80	0.95	143.26	
	35.28	16.95	3.75	2.80	0.95	239.79	
	29.69	11.00	0.95	2.80	0.95	13.40	
	29.69	11.00	1.90	2.80	0.95	53.59	
波圧作用時 	29.69	11.00	2.85	2.80	0.95	120.56	
	29.69	11.00	3.75	2.80	0.95	200.32	

### ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN∙m)	位置
	17.50	9.13	0.95	2.80	0.95	7.90	
トリート 日り上げ時	17.50	9.13	1.90	2.80	0.95	31.59	
ロウエルは	17.50	9.13	2.85	2.80	0.95	71.06	
	17.50	9.13	3.75	2.80	0.95	119.27	
	11.86	5.76	0.95	2.80	0.95	5.35	
	11.86	5.76	1.90	2.80	0.95	21.41	
波圧作用時	11.86	5.76	2.85	2.80	0.95	48.16	
	11.86	5.76	3.75	2.80	0.95	80.64	

# b) 港内側バットレス 設計荷重は下図のとおり。



※( )内の値は端部バットレス

図 - 3.4.62 荷重図

曲げモーメントの算定は、下図の ~ の位置について、その位置ごとの曲げモーメントを片持ち梁として下式により算出する。

$$M(x) = \frac{W_1}{2} \cdot x^2 \quad (x \quad a)$$

$$M(x) = \frac{W_1 \cdot a}{2} \cdot (2x - a) + \frac{W_2}{2} \cdot (x - a)^2 \quad (x > a)$$

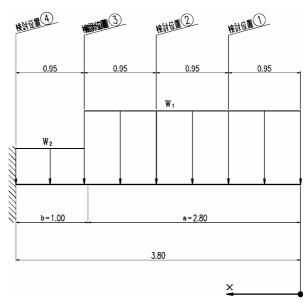



図 - 3.4.63 断面力算定モデル図

#### 上向きの荷重に対して

#### ・中央部バットレス

	W <b>1</b>	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	145.38	69.90	0.95	2.80	1.00	65.60	
波圧作用時	145.38	69.90	1.90	2.80	1.00	262.41	
<i>版</i> 注1F用时。	145.38	69.90	2.85	2.80	1.00	590.33	
	145.38	69.90	3.80	2.80	1.00	1011.90	

#### ・端部バットレス

	W1	W2	х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	72.10	37.39	0.95	2.80	1.00	32.54	
   波圧作用時	72.10	37.39	1.90	2.80	1.00	130.14	
放注TF用时。	72.10	37.39	2.85	2.80	1.00	292.77	
	72.10	37.39	3.80	2.80	1.00	503.21	

# 下向きの荷重に対して

# ・中央部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	35.28	17.28	0.95	2.80	1.00	15.92	
   吊り上げ時	35.28	17.28	1.90	2.80	1.00	63.68	
いっていぬ	35.28	17.28	2.85	2.80	1.00	143.26	
	35.28	17.28	3.80	2.80	1.00	245.72	
	29.69	11.27	0.95	2.80	1.00	13.40	
沙口作用吐	29.69	11.27	1.90	2.80	1.00	53.59	
波圧作用時	29.69	11.27	2.85	2.80	1.00	120.56	
	29.69	11.27	3.80	2.80	1.00	205.15	

### ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	17.50	9.26	0.95	2.80	1.00	7.90	
トリ上げ時 吊り上げ時	17.50	9.26	1.90	2.80	1.00	31.59	
ロウエいは	17.50	9.26	2.85	2.80	1.00	71.06	
	17.50	9.26	3.80	2.80	1.00	122.23	
	14.73	5.88	0.95	2.80	1.00	6.65	
*************************************	14.73	5.88	1.90	2.80	1.00	26.59	
波圧作用時   	14.73	5.88	2.85	2.80	1.00	59.81	
	14.73	5.88	3.80	2.80	1.00	101.93	

### 3.5 各部材の安全照査

# 3.5.1 終局限界状態

(1) 各部材の有効高さ

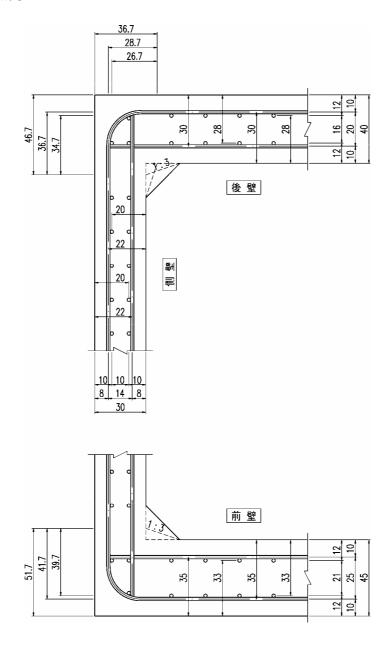



図 - 3.5.1 各部材の有効高さ(その1)

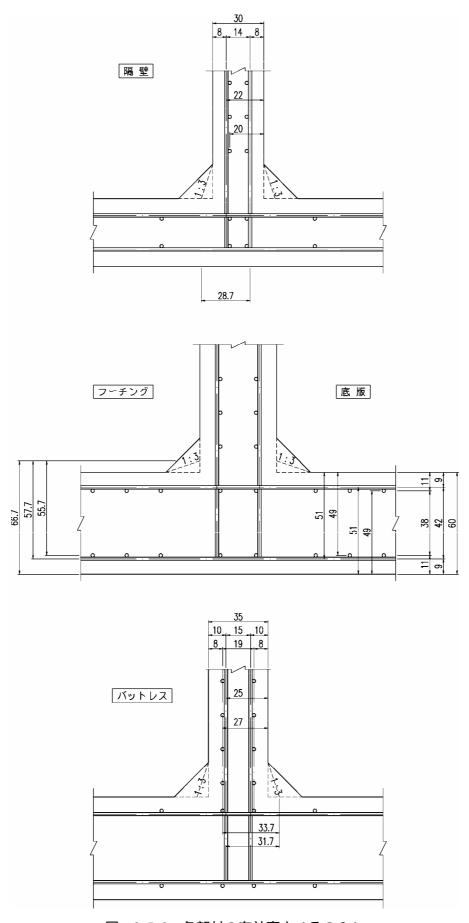



図 - 3.5.2 各部材の有効高さ(その2)

#### (2) 終局限界状態における安全性照査

#### 1) 照查手法

前章で算定した各部材の設計曲げモーメントから必要鉄筋量を算定し、安全性照査を行うものとする。

・必要鉄筋量

終局限界状態における安全性照査  $_{i}$   $\cdot$   $M_{d}$  /  $M_{ud}$  1.0 を満足するための必要鉄筋量  $A_{sn}$  は、下式によって算定する。

$$A_{sn} = \frac{A_n \left( d - \sqrt{d^2 - \frac{4 \cdot i \cdot b \cdot M_d}{A_n}} \right)}{2 \cdot f_{vd}}$$

ここに、 $A_n = 1.7 \cdot b_w \cdot f_{cd}$ 

f_{vd} ; 引張鉄筋の設計引張降伏強度

 $f_{vd} = f_{vk} / _{s} = 345/1.0 = 345 \text{N/mm}^2$ 

d ; 版の有効高さ

b ; 部材係数 (=1.15)

s ;鉄筋の材料係数 (=1.00)

。; コンクリートの材料係数 (=1.30)

; , 構造物係数 (=1.10)

b。 ;検討部材の単位幅

f_{cd};コンクリートの設計圧縮強度

 $f_{cd} = f_{ck} / c = 24/1.3 = 18.5 \text{N/mm}^2$ 

終局限界状態における安全性照査は、以下に示す手法により行う。

・曲げモーメントを受ける部材

曲げモーメントを受ける部材の終局状態に対する検討は、断面耐力の設計用値  $(M_{ud})$ が断面力の設計用値  $(M_d)$ 以上であることを確かめることによって行う。

[曲げ耐力(M_{ud})の計算]

$$M_{ud} = A_{s} \cdot f_{yd} \cdot d \cdot \left\{ 1 - \frac{P_{w}}{1.7} \cdot \frac{f_{yd}}{f_{cd}} \right\} \cdot \frac{1}{b}$$

ここに、 A_s; 引張鉄筋量(cm²)

Pw;鉄筋比(=As/(bw·d))

[照 査]

$$\frac{\frac{1}{M_d}}{M_{ud}}$$
 1.0

ここに、 ; 構造物係数(波圧時:1.1 その他:1.0)

#### 2) 前壁の安全照査

前壁は通水孔の配置間隔を考慮し、照査位置に配置される鉄筋の本数を 1m 当たり に換算し、安全性の照査を行なう。

#### 【鉛直方向】

・通水孔部(格子点番号 ~ ) 通水孔の配置間隔 1.10m

外側,內側共 
$$\frac{3x}{1.10m} = 2.7 \text{ } / \text{m}$$

・その他(格子点番号 , ) 外側,内側共 
$$\frac{1.00\text{m}}{0.115\text{m}}$$
 = 8.7 本/m ,  $\frac{1.00\text{m}}{0.210\text{m}}$  = 4.8 本/m

#### 【水平方向】

・通水孔部(格子点番号 ~ ) 通水孔の配置間隔 1.20m

外側,內側共 
$$\frac{3 + 1.20 \text{m}}{1.20 \text{m}} = 2.5 \text{ } \pm /\text{m}$$

・その他(格子点番号 , )

外側,内側共 
$$\frac{1.00\text{m}}{0.20\text{m}} = 5.0 \text{ 本/m}$$
 ,  $\frac{1.00\text{m}}{0.175\text{m}} = 5.7 \text{ 本/m}$ 

前壁の安全照査については、通常のケーソンと同様のため省略する。

#### 3) 後壁の安全照査

後壁は通水孔の配置間隔を考慮し、照査位置に配置される鉄筋の本数を 1m 当たり に換算し、安全性の照査を行なう。

#### 【鉛直方向】

・通水孔部(格子点番号 ~ ) 通水孔の配置間隔 1.10m

外側,内側共 
$$\frac{5 \pm}{1.10 \text{m}} = 4.5 \pm \text{m}$$

・その他(格子点番号 , ) 外側,内側共 
$$\frac{1.00\text{m}}{0.115\text{m}}$$
 = 8.7 本/m ,  $\frac{1.00\text{m}}{0.210\text{m}}$  = 4.8 本/m

#### 【水平方向】

・通水孔部(格子点番号 ~ ) 通水孔の配置間隔 1.20m

外側,内側共 
$$\frac{5本}{1.20m} = 4.2 \text{ } \pm 4.2 \text{ } \pm 1.20m$$

・その他(格子点番号 , ) 外側,内側共 
$$\frac{1.00m}{0.20m}$$
 = 5.0 本/m ,  $\frac{1.00m}{0.175m}$  = 5.7 本/m

後壁の安全照査については、通常のケーソンと同様のため省略する。

# 4) 側壁及び隔壁の安全照査 側壁及び隔壁の安全照査については、通常のケーソンと同様のため省略する。

### 5) フーチング

### a) 港外側

・法線直角方向鉄筋 上側

	74115	T/13/31	山水人月儿	上則								
$\setminus$	Md	d	A sn	配	筋	As		f'cd	f yd	Mud		
	(kN·m/m)	(cm)	(cm ² )	鉄筋径	ピッチ (cm)	(cm ² )	Pw	(N/mm²)	(N/mm²)	(kN•m/m)	i Md/Mud	判定
	229.20	51.0	17.11	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.461	OK
	239.44	51.0	17.90	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.482	OK
	413.25	51.0	31.90	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.832	OK
	412.53	51.0	31.84	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.830	OK
	368.86	51.0	28.23	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.742	OK
	113.04	51.0	8.27	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.227	OK
	139.63	51.0	10.27	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.281	OK
	233.00	51.0	17.40	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.469	OK
	236.74	51.0	17.69	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.476	OK
	389.97	51.0	29.97	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.785	OK
	390.71	51.0	30.03	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.786	OK
	368.07	51.0	28.17	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.741	OK
	96.87	51.0	7.07	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.195	OK
	114.50	51.0	8.38	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.230	OK
	233.00	51.0	17.40	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.469	OK
	238.87	51.0	17.86	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.481	OK
	388.96	51.0	29.89	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.783	OK
	388.27	51.0	29.83	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.781	OK
	368.59	51.0	28.21	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.742	OK
	94.66	51.0	6.91	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.190	OK
	93.32	51.0	6.81	D25	@13.0	38.98	0.0076	18.5	345	546.67	0.188	OK

·法線直角方向鉄筋 下側

	Md	d	A sn	配	筋	As		f 'cd	f yd	Mud		
	(kN·m/m)	(cm)	(cm ² )	鉄筋径	ピッチ (cm)	(cm ² )	Pw	(N/mm ² )	(N/mm²)	(kN·m/m)	i Md/Mud	判定
	328.75	51.0	24.98	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.742	OK
	332.29	51.0	25.26	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.750	OK
	390.24	51.0	29.99	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.881	OK
	322.18	51.0	24.45	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.727	OK
	262.88	51.0	19.74	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.593	OK
	129.15	51.0	9.48	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.292	OK
	182.33	57.7	11.85	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.361	OK
	334.51	51.0	25.44	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.755	OK
	335.78	51.0	25.54	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.758	OK
	364.10	51.0	27.84	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.822	OK
	296.04	51.0	22.36	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.668	OK
	267.14	51.0	20.07	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.603	OK
	111.89	51.0	8.19	D25,D22	@26.0	34.38	0.0067	18.5	345	487.35	0.253	OK
	144.54	57.7	9.35	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.286	OK
	334.51	57.7	22.19	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.662	OK
	352.24	57.7	23.43	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.697	OK
	376.09	57.7	25.10	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.744	OK
	303.62	57.7	20.06	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.601	OK
	271.54	57.7	17.86	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.537	OK
	102.96	57.7	6.63		@26.0	34.38	0.0060	18.5	345	555.95	0.204	OK
	100.45	57.7	6.46	D25,D22	@26.0	34.38	0.0060	18.5	345	555.95	0.199	OK

・法線平行方向鉄筋 上側

$\setminus$	Md	d	Asn	配	筋	As		f 'cd	f yd	Mud		
L	(kN•m/m)	(cm)	(cm ² )	鉄筋径	ピッチ (cm)	(cm ² )	Pw	(N/mm²)	(N/mm²)	(kN·m/m)	i Md/ Mud	判定
	180.12	49.0	13.91	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.433	OK
	174.47	49.0	13.46	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.419	OK
	176.79	49.0	13.65	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.425	OK
	142.83	49.0	10.96	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.343	OK
	110.85	49.0			@20.0	33.68	0.0069	18.5	345	457.62	0.266	OK
	14.92	49.0	1.12	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.036	OK
	18.17	49.0	1.36	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.044	OK
	366.97	49.0	29.39	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.882	OK
	365.51	49.0	29.27	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.879	OK
	385.10	49.0	30.96	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.926	OK
	247.90	49.0	19.39	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.596	OK
	200.07	49.0	15.51	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.481	OK
	25.84	49.0	1.94	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.062	OK
	28.87	49.0	2.17	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.069	OK
	385.52	49.0	31.00	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.927	OK
	385.89	49.0	31.03	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.928	OK
	404.74	49.0	32.68	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.973	OK
	265.88	49.0	20.87	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.639	OK
	213.70	49.0	16.61	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.514	OK
	33.33	49.0	2.51	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.080	OK
	25.34	49.0	1.90	D19,D22	@20.0	33.68	0.0069	18.5	345	457.62	0.061	OK

· 法線平行方向鉄筋 下側

	Md	d	Asn	配	筋	As		f 'cd	f yd	Mud		
	(kN·m/m)	(cm)	(cm ² )	鉄筋径	ピッチ (cm)	(cm ² )	Pw	(N/mm²)	$(N/mm^2)$	(kN·m/m)	i Md/ Mud	判定
	201.58	49.0	15.63	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.815	OK
	200.27	49.0	15.53	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.810	OK
	213.47	49.0	16.59	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.863	OK
	138.69	49.0	10.63	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.561	OK
	105.57	49.0	8.04	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.427	OK
	13.34	49.0	1.00	D22	@20.0	19.36	0.0040	18.5	345	272.10	0.054	OK
	24.38	55.7	1.61	D22	@20.0	19.36	0.0035	18.5	345	311.08	0.086	OK
	245.34	49.0	19.18	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.590	OK
	245.33	49.0	19.18	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.590	OK
	259.34	49.0	20.33	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.623	OK
	239.81	49.0	18.73	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.576	OK
	209.71	49.0	16.29	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.504	OK
	30.05	49.0	2.26	D22,D19	@20.0	33.68	0.0069	18.5	345	457.62	0.072	OK
	36.74	55.7	2.43	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.077	OK
	357.64	55.7	24.75	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.748	OK
	346.81	55.7	23.96	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.726	OK
	344.58	55.7	23.80	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.721	OK
	306.15	55.7	21.02	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.641	OK
	251.17	55.7	17.11	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.526	OK
	44.39	55.7	2.94			33.68	0.0060	18.5	345	525.75	0.093	OK
	29.42	55.7	1.94	D22,D19	@20.0	33.68	0.0060	18.5	345	525.75	0.062	OK

### b) 港内側

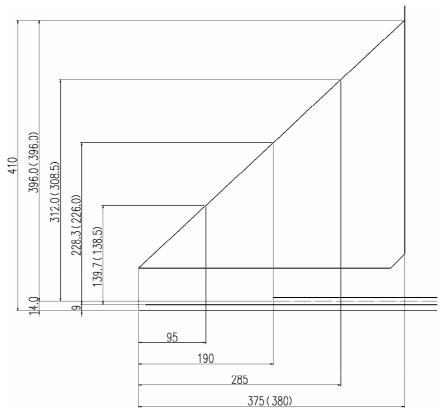
港内側は省略する。

# 6) バットレス

# a) バットレスに垂直方向に作用する波圧に対して 港外側

・鉛直方向鉄筋

	Md	d	Asn	配	筋	As		f 'cd	f yd	Mud		
	(kN·m/m)	(cm)	(cm ² )	鉄筋径	ピッチ	(cm ² )	Pw	(N/mm ² )	(N/mm ² )	(kN·m/m)	i Md/ Mud	判定
<b>—</b>	<u> </u>	<u> </u>	` ′		(cm)				` ′	, ,		
-	0.00		0.00	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.000	0K
	2.66 4.7	_	0.31	D13	@20.0 @20.0	6.34	0.0020	18.5 18.5	345 345	58.97 58.97	0.050 0.088	OK OK
	5.94		0.69	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.111	OK
	6.48	_	0.75	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.121	OK
	6.42	_	0.74	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.120	OK
1 -	5.73	_	0.66	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.107	0K
-	2.66	_	0.51	D13	@20.0 @20.0	6.34	0.0020	18.5 18.5	345 345	58.97 58.97	0.083 0.050	OK OK
<b> </b>	0.75	_	0.09	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.030	OK
	0.00	_	0.00	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.000	OK
	2.12	25.0	0.31	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.050	OK
	0.82	_	0.12	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.020	OK
-	1.23	_	0.18	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.029	0K
H	1.37		0.20 0.18	D13	@20.0 @20.0	6.34	0.0025 0.0025	18.5 18.5	345 345	46.25 46.25	0.033	OK OK
	0.96	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.023	OK
Ιþ	0.68		0.10	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.016	OK
ΙĹ	0.75	25.0	0.11	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.018	OK
1 L	2.12	_	1	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.050	OK
$\vdash$	5.05		0.59	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.094	0K
1 F	3.55		1 -	D13	@20.0 @20.0	6.34	0.0025 0.0025	18.5 18.5	345 345	46.25 46.25	0.021 0.084	OK OK
1	3.69	_	0.52	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.084	OK OK
	3.75	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.089	OK
	3.48	_	0.51	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.083	OK
	2.53	25.0	-	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.060	OK
-	0.00		-	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.000	OK
I -	5.53	_	0.81	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.132	OK OK
	16.0 ⁴ 5.32		1.87 0.78	D13	@20.0 @20.0	6.34	0.0020 0.0025	18.5 18.5	345 345	58.97 46.25	0.299 0.127	OK OK
	7.58	_	1.12	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.127	OK
	7.5	_	1.11	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.179	OK
	6.69	_	0.99	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.159	OK
	4.44	_	0.65	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.106	OK
-	0.34		0.05	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.008	0K
-	9.62	_	1.42 3.09	D13	@20.0 @20.0	6.34	0.0025 0.0020	18.5 18.5	345 345	46.25 58.97	0.229 0.493	OK OK
	8.46	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.400	OK
	9.2	_	1.36	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.219	OK
	7.99	25.0	1.18	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.190	OK
	4.9		0.72	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.117	OK
-	1.37	_	0.20	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.033	0K
-	13.24 33.92	_	1.96 3.98	D13	@20.0 @20.0	6.34	0.0025 0.0020	18.5 18.5	345 345	46.25 58.97	0.315 0.633	OK OK
H	8.40		1.24	D13	@20.0	6.34	0.0020	18.5	345	46.25	0.200	0K
1 F	7.10	_	1.05	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.169	OK
ΙĹ	3.82		0.56	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.091	OK
ΙĹ	2.94	_	0.43	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.070	OK
1 F	15.77			D13	@20.0 @20.0	6.34	0.0025	18.5	345	46.25	0.375	OK OK
$\vdash$	38.09	_		D13	@20.0 @20.0	6.34	0.0020 0.0025	18.5 18.5	345 345	58.97 46.25	0.711 0.106	OK OK
1 H	1.02	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.100	OK
1 h	4.9	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.117	OK
ΙĹ	16.93	25.0	2.51	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.403	OK
$\sqcup$	38.63	_		D13	@20.0	6.34	0.0020	18.5	345	58.97	0.721	OK
	2.39	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.057	0K
-	7.58			D13	@20.0 @20.0	6.34	0.0025 0.0025	18.5 18.5	345 345	46.25 46.25	0.180 0.395	OK OK
1 H	35.15	_	1	D13	@20.0	6.34	0.0025	18.5	345	46.25 58.97	0.395	OK OK
H	9.35	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.222	OK
	15.09	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.359	OK
Ш	27.71	_	1	D13	@20.0	6.34	0.0020	18.5	345	58.97	0.517	OK
-	11.26	_		D13	@20.0	6.34	0.0025	18.5	345	46.25	0.268	0K
Y1	15.77			D13	@20.0	6.34	0.0020 0.0025	18.5	345	58.97	0.294	0K
ΧI	0.00	25.0	0.00	D13	@20.0	6.34	0.0025	18.5	345	46.25	0.000	OK


# ・水平方向鉄筋

$\overline{}$		Md	d	Asn	配	筋	As		f 'cd	f yd	Mud		
\	$\setminus$	(kN·m/m)	(cm)	(cm ² )	鉄筋径	ピッチ	(cm ² )	Pw	(N/mm ² )	(N/mm ² )	(kN·m/m)	i Md/ Mud	判定
	$\dashv$	0.00	33.7	0.00	D13	(cm) @20.0	6.34	0.0019	18.5	345	62.76	0.000	OK
		15.77	33.7	1.73	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.276	OK
		27.71	33.7	3.05	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.486	OK
		35.15	33.7	3.87	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.616	0K
		38.63 38.09	33.7	4.26 4.20	D13	@20.0 @20.0	6.34	0.0019 0.0019	18.5 18.5	345 345	62.76 62.76	0.677 0.668	OK OK
		33.92	33.7	3.74	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.595	OK
		26.42	33.7	2.90	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.463	0K
		16.04	33.7	1.76	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.281	0K
		5.05 0.00	33.7	0.55	D13	@20.0 @20.0	6.34	0.0019	18.5 18.5	345 345	62.76 62.76	0.089	OK OK
		11.26	27.0	1.54	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.247	OK
		15.09	27.0	2.07	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.332	0K
		16.59	27.0	2.27	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.365	0K
		16.93 15.77	27.0 27.0	2.32	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	50.06 50.06	0.372 0.347	OK OK
		13.24	27.0	1.81	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.291	0K
		9.62	27.0	1.31	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.211	0K
		5.53	27.0	0.75	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.122	0K
	H	2.12 0.75	27.0 33.7	0.29	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	50.06 62.76	0.047 0.013	OK OK
Г		9.35	27.0	1.28	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.205	OK
		7.58	27.0	1.03	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.167	OK
		4.91 2.94	27.0	0.67	D13	@20.0 @20.0	6.34	0.0023	18.5	345	50.06 50.06	0.108	OK OK
		1.37	27.0	0.40	D13	@20.0	6.34	0.0023	18.5 18.5	345 345	50.06	0.065 0.030	OK OK
		0.34	27.0	0.05	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.007	OK
		0.00	27.0	0.00	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.000	0K
		0.75	27.0	0.10	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.016	0K
		2.66	33.7 27.0	0.29	D13	@20.0 @20.0	6.34	0.0019	18.5 18.5	345 345	62.76 50.06	0.047 0.053	OK OK
		1.02	27.0	0.14	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.022	OK
		3.82	27.0	0.52	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.084	OK
		4.91	27.0	0.67	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.108	0K
		4.44 2.53	27.0 27.0	0.60	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	50.06 50.06	0.098 0.056	OK OK
		0.68	27.0	0.09	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.015	0K
		4.44	33.7	0.48	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.078	0K
		4.44	27.0	0.60	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.098	0K
		7.10 7.99	27.0 27.0	0.97	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	50.06 50.06	0.156 0.176	OK OK
		6.69	27.0	0.91	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.147	0K
		3.48	27.0	0.47	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.076	0K
		0.96	27.0	0.13	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.021	0K
H	H	5.73 8.40	33.7 27.0	0.62 1.15	D13	@20.0 @20.0	6.34	0.0019	18.5 18.5	345 345	62.76 50.06	0.100 0.185	OK OK
		9.21	27.0	1.26	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.202	OK
		7.51	27.0	1.02	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.165	0K
		3.75	27.0	0.51	D13	@20.0 @20.0	6.34	0.0023	18.5	345	50.06 50.06	0.082 0.027	OK OK
		1.23 6.42	27.0 33.7	0.17 0.70	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	62.76	0.027	
		8.46	27.0	1.15	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.186	OK
		7.58	27.0	1.03	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.167	OK
	$\vdash$	3.69	27.0	0.50	D13	@20.0	6.34	0.0023	18.5	345	50.06 50.06	0.081	0K
		1.37 6.48	27.0 33.7	0.19 0.71	D13	@20.0 @20.0	6.34	0.0023	18.5 18.5	345 345	62.76	0.030 0.114	OK OK
		5.32	27.0	0.72	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.117	OK
		3.55	27.0	0.48	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.078	OK
	$\vdash$	1.23 5.94	27.0	0.17	D13	@20.0 @20.0	6.34	0.0023	18.5	345	50.06	0.027	0K
		0.89	33.7 27.0	0.65 0.12	D13	@20.0 @20.0	6.34	0.0019	18.5 18.5	345 345	62.76 50.06	0.104 0.020	OK OK
		0.82	27.0	0.11	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.018	OK
Ш		4.71	33.7	0.51	D13	@20.0	6.34	0.0019	18.5	345	62.76	0.083	OK
		2.12	27.0	0.29	D13	@20.0	6.34	0.0023	18.5	345	50.06	0.047	0K
ΧI	H	2.66 0.00	33.7 27.0	0.29	D13 D13	@20.0 @20.0	6.34	0.0019	18.5 18.5	345 345	62.76 50.06	0.047 0.000	OK OK
ΛΙ	ш	0.00	21.0	0.00	טוע	⊎∠U.U	0.34	0.0023	10.5	343	30.06	0.000	UN

港内側 港内側は省略する。

### b) バットレスの軸方向に作用する波圧に対して 上向きの荷重 (下からの荷重に対して)

・有効高さの計算



()内の値は港内側のバットレスを示す。

図 - 3.5.3 有効高さ

#### ・C₁,C₂の算出

$$_{s}$$
 = 196N/mm²,  $_{c}$  = 9N/mm² における  $C_{1}$ ,  $C_{2}$  は下記のとおり。  $C_{1}$  =  $\frac{_{s}+_{n}+_{n}+_{c}}{_{n}+_{c}+_{c}} \cdot \sqrt{\frac{_{6}+_{n}}{_{3}+_{s}+_{2}+_{n}+_{c}}}$  =  $\frac{_{196}+_{15}\times_{9}}{_{15}\times_{9}} \times \sqrt{\frac{_{6}\times_{15}}{_{3}\times_{196}+_{2}\times_{15}\times_{9}}}$  = 0.794  $C_{2}$  =  $\frac{_{c}}{_{2}+_{s}} \cdot \sqrt{\frac{_{6}+_{n}}{_{3}+_{s}+_{2}+_{n}+_{c}}}$  =  $\frac{_{9}}{_{2}\times_{196}} \times \sqrt{\frac{_{6}\times_{15}}{_{3}\times_{196}+_{2}\times_{15}\times_{9}}}$  = 0.00744

・有効高さの算出 有効高さd は次式により求める。

$$d = C1 \sqrt{\frac{M}{b_0}} \qquad d$$

$$b_o = 350$$
mm

		ı	中央部バット	・レス					端部バット	レス		
	X	間	М	d'		d	X	間	М	d'		d
	番号	x (m)	(kN·m)	(mm)		(mm)	番号	× (m)	(kN·m)	(mm)		(mm)
港		0.95	170.23	554	<	1397		0.95	84.42	390	<	1397
外		1.90	680.94	1107	<	2283		1.90	337.70	780	<	2283
		2.85	1531.85	1661	<	3120		2.85	759.70	1170	<	3120
側		3.75	2558.76	2147	<	3960		3.75	1272.04	1514	<	3960
港		0.95	151.57	523	<	1385		0.95	75.17	368	<	1385
		1.90	606.30	1045	<	2260		1.90	300.68	736	<	2260
内		2.85	1363.95	1567	<	3085		2.85	676.42	1104	<	3085
側		3.80	2335.30	2051	<	3960		3.80	1161.07	1446	<	3960

以上より、バットレスは圧縮鉄筋を考慮しない単鉄筋矩形梁として計算を行う。

・上向きの荷重に対する安全照査(港外側) ここでは、港内側については省略する。

						港外側バ	ットレス			
`				中央部バ	シトレス			端部バ、	ットレス	
部材幅 b _w		(mm)	350	350	350	350	350	350	350	350
有効高さ d		(mm)	1397	2283	3120	3960	1397	2283	3120	3960
$M_d$		(kN⋅mm)	114730	458940	1032430	1723100	56900	227590	512000	856460
ケース			波圧	波圧	波圧	波圧	波圧	波圧	波圧	波圧
構造物係数			1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
必要鉄筋量	A _{sn}	$(mm^2)$	275	676	1116	1467	136	334	550	725
		径	D22	D22	D22	D22	D22	D22	D22	D22
	1段目	本数	3	3	3	3	3	3	3	3
配筋		鉄筋量	1161	1161	1161	1161	1161	1161	1161	1161
HC AN		径			D19	D19			D19	D19
	2 段目	本数			3	3			3	3
		鉄筋量			860	860			860	860
使用鉄筋量	As	$(mm^2)$	1161	1161	2021	2021	1161	1161	2021	2021
鉄筋比 pw			0.0024	0.0015	0.0019	0.0015	0.0024	0.0015	0.0019	0.0015
f' _{cd}		$(N/mm^2)$	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
f _{yd}		$(N/mm^2)$	345.0	345.0	345.0	345.0	345.0	345.0	345.0	345.0
曲げ耐力 Mu		(kN/mm)	473765	782085	1852229	2361441	473765	782085	1852229	2361441
i•M _d / M _u			0.266	0.645	0.613	0.803	0.132	0.320	0.304	0.399
判		定	OK	OK	OK	OK	OK	OK	OK	OK

### 下向きの荷重(上からの荷重に対して)

・有効高さ

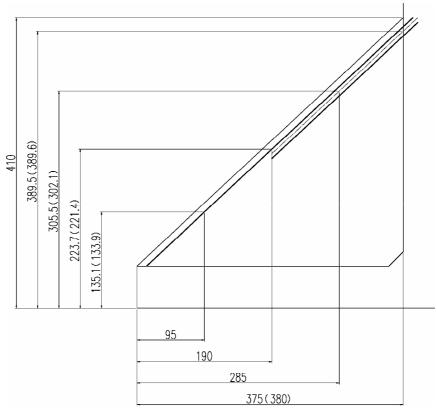



図 - 3.5.4 有効高さ

・T形突縁部有効幅の計算

両側にスラブがある場合 (中央部)

T形突縁部の有効幅は次式による。

$$b_e = b_o + 2 \cdot \left(b_s + \frac{1}{8} \cdot L\right)$$

ここに、

L:純スパンの2倍の長さ(片持ち梁の場合)

 $b_s: 0.20m$  $b_o: 0.35m$ 

	X	間	L	b _o	b _s	b _e
	番号	× (m)	( m )	(m)	(m)	(m)
		0.95	1.90	0.35	0.20	1.225
港 外 側		1.90	3.80	0.35	0.20	1.700
側		2.85	5.70	0.35	0.20	2.175
		3.75	7.50	0.35	0.20	2.625
		0.95	1.90	0.35	0.20	1.225
港内側		1.90	3.80	0.35	0.20	1.700
側		2.85	5.70	0.35	0.20	2.175
		3.80	7.60	0.35	0.20	2.650

片側にスラブがある場合 (端部) T形突縁部の有効幅は次式による。

$$b_{e} = b_{o} + b_{s} + \frac{1}{8} \cdot L$$

# ここに、

L:純スパンの2倍の長さ(片持ち梁の場合)

 $b_s: 0.20m$  $b_o: 0.35m$ 

	X	間	L	b _o	b _s	b _e
	番号	× (m)	( m )	(m)	(m)	(m)
		0.95	1.90	0.35	0.20	0.788
港外側		1.90	3.80	0.35	0.20	1.025
側		2.85	5.70	0.35	0.20	1.263
		3.75	7.50	0.35	0.20	1.488
		0.95	1.90	0.35	0.20	0.788
港内側		1.90	3.80	0.35	0.20	1.025
側		2.85	5.70	0.35	0.20	1.263
		3.80	7.60	0.35	0.20	1.500

#### ・中立軸の算出

T形梁として中立軸の位置を次式にて算出する。

$$x = \frac{2 \cdot (n \cdot A_s' \cdot d) + b_e + t^2}{2 \cdot (n \cdot A_s' + b_e \cdot t)}$$

ここに、

x:中立軸の位置

be:突縁部の有効幅

t:フーチング厚 t=60cm

As :使用鉄筋量

【港外側】 As =鉄筋純断面積 $\times \cos 43.03^{\circ}$ 

中央部バットレス

, (1段配筋 D16-2本)

As =  $1.986 \text{cm}^2 \times 2 \times \cos 43.03^\circ = 2.90 \text{cm}^2$ 

, (2段配筋 D16-4本)

As  $= 2.90 \text{cm}^2 \times 2 = 5.80 \text{cm}^2$ 

端部バットレス

, (1段配筋 D13-2本)

As =  $1.267 \text{cm}^2 \times 2 \times \cos 43.03^\circ = 1.85 \text{cm}^2$ 

, (2段配筋 D13-4本)

As =  $1.85 \text{cm}^2 \times 2 = 3.70 \text{cm}^2$ 

【港内側】 As = 鉄筋純断面積×cos42.65°

中央部バットレス

, (1段配筋 D16-2本)

As =  $1.986 \text{cm}^2 \times 2 \times \cos 42.65^\circ = 2.92 \text{cm}^2$ 

, (2段配筋 D16-4本)

As =  $2.92 \text{cm}^2 \times 2 = 5.84 \text{cm}^2$ 

端部バットレス

, (1段配筋 D13-2本)

As =  $1.267 \text{cm}^2 \times 2 \times \cos 43.03^\circ = 1.86 \text{cm}^2$ 

, (2段配筋 D13-4本)

As =  $1.86 \text{cm}^2 \times 2 = 3.72 \text{cm}^2$ 

### ・中央部バットレス

	X	間	b _e	A _s '	d	t		X _o
	番号	$\times$ (m)	(cm)	( cm ² )	(cm)	(cm)		(cm)
		0.95	122.5	2.90	135.1	60.0	>	30.6
港 外 側		1.90	170.0	2.90	223.7	60.0	>	30.8
側		2.85	217.5	5.80	305.5	60.0	>	31.8
		3.75	262.5	5.80	389.5	60.0	>	32.0
		0.95	122.5	2.92	133.9	60.0	>	30.6
港内		1.90	170.0	2.92	221.4	60.0	>	30.8
港内側		2.85	217.5	5.84	302.1	60.0	>	31.8
		3.80	265.0	5.84	389.6	60.0	>	32.0

### ・端部バットレス

	X	間	b _e	A , '	d	t		X _o
	番号	$\times$ (m)	(cm)	( cm ² )	(cm)	(cm)		(cm)
		0.95	78.8	1.85	135.1	60.0	>	30.6
港 外 側		1.90	102.5	1.85	223.7	60.0	>	30.9
側		2.85	126.3	3.70	305.5	60.0	۸	32.0
		3.75	148.8	3.70	389.5	60.0	۸	32.2
		0.95	78.8	1.86	133.9	60.0	>	30.6
港内側		1.90	102.5	1.86	221.4	60.0	^	30.9
側		2.85	126.3	3.72	302.1	60.0	^	32.0
		3.80	150.0	3.72	389.6	60.0	^	32.2

以上より、中立軸はすべて突縁内にあるので、照査は単鉄筋矩形梁として次ページ以降で 計算を行う。

# ・下向きの荷重に対する安全照査(港外側) ここでは、港内側については省略する。

						港外側バ	ジットレス			
		_		中央部バ	ットレス			端部バ、	ットレス	
部材幅 b _w		(mm)	1225	1700	2175	2625	788	1025	1263	1488
有効高さ d		(mm)	1351	2237	3055	3895	1351	2237	3055	3895
	$_{i}M_{d}$	(kN·mm)	41420	165660	372690	625120	20540	82150	184800	311340
ケース			波圧							
構造物係数	i		1.1	1.1	1.1	1.1	1.1	1.1	1.1	1.1
必要鉄筋量	A _{sn}	$(mm^2)$	102	247	407	535	51	122	202	267
		径	D19	D19	D19	D19	D13	D13	D13	D13
	1段目	本数	2	2	2	2	2	2	2	2
配筋		鉄筋量	419	419	419	419	185	185	185	185
AC AJ		径			D16	D16			D13	D13
	2段目	本数			2	2			2	2
		鉄筋量			290	290			185	185
使用鉄筋量	A _s	(mm ² )	419	419	709	709	185	185	370	370
鉄筋比 pw			0.0003	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001
f' _{cd}		$(N/mm^2)$	18.5	18.5	18.5	18.5	18.5	18.5	18.5	18.5
f _{vd}		$(N/mm^2)$	345.0	345.0	345.0	345.0	345.0	345.0	345.0	345.0
曲げ耐力 Mu		(kN/mm)	169262	280882	649086	827558	74816	124017	338733	431871
i • M _d / M _u			0.269	0.649	0.632	0.831	0.302	0.729	0.600	0.793
判		<del></del> 定	OK							

#### 3.5.2 使用限界状態

#### (1) 照査手法

使用限界状態における安全性照査は、以下に示す手法により行う。

・曲げひび割れに対して

曲げひび割れに対する検討は、使用限界状態における荷重の設計用値により生じる部材のひび割れ幅が許容ひび割れ幅以下であることを確認することにより行う。 [曲げひび割れ幅の計算]

$$w = 1.1 \cdot k_1 \cdot k_2 \cdot k_3 \cdot \left\{ 4c + 0.7 \cdot (c_s - ) \right\} \cdot \left[ \frac{sa}{E_s} + c_{csd} \right]$$

ここに、 k₁;鋼材の表面形状がひび割れ幅に及ぼす影響を表す定数。

k₁=1.0(異形鉄筋の場合)

k₂; コンクリートの品質がひびわれ幅に及ぼす影響を表す定数。

k2=0.9(均質なかぶりコンクリートが施工される場合として)

k₃; 引張鋼材の段数の影響を表す定数。

$$k_3 = 1.0$$

c ; かぶり(cm)

c。; 鉄筋の中心間隔(cm)

; 鉄筋径(mm)

'csd; コンクリートの乾燥収縮およびクリープによるび割れを考慮

するための数値。 'csd = 0

se;鋼材位置の鉄筋の増加引張応力度(N/mm²)

 $_{se} = Ms/(As \cdot j \cdot d)$ 

Ms;使用時設計曲げモーメント

j = 1 - k / 3

k;中立軸比

 $k = -np+{2np+(np)^2}^{1/2}$ 

n = Es/Ec=8

p;鉄筋比

p = As/bd

#### [許容ひび割れ幅]

許容ひび割れ幅は、全ての部材が海水と接しているため、環境条件を "厳しい環境" と判断し、許容ひび割れ幅(W_a)を下式により求める。

$$W_a = 0.0035 \cdot c$$

[照 查]

$$\frac{W}{W_a}$$
 1.0

### (2) 安全照査

ここでは、フーチングおよびバットレスに対する安全照査のみ記述し、他部材については省略する。

### 1) フーチング

### a) 港外側

・法線直角方向鉄筋 上側

		· /_ i	泳旦用.	门凹琢	.肋 上則	J									
		Ms	d	С	配卸	ĥ	As				増加	ひび割れ幅	許容ひび割れ幅		
\	<b>\</b>	(kN·m)	(cm)	(cm)	鉄筋径	ピッチ	(cm ² )	Pw	k	j	引張応力度	W	$W_a$	W/W _a	判定
		(KN III)	(CIII)	(CIII)	业人出力1工	(cm)	(CIII )				(N/mm ² )	(cm)	(cm)		
		110.45	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	61.60	0.0118	0.0271	0.435	OK
		116.61	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	65.03	0.0125	0.0271	0.461	OK
		144.87	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	80.79	0.0155	0.0271	0.572	OK
		144.74	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	80.72	0.0155	0.0271	0.572	OK
		121.06	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	67.51	0.0129	0.0271	0.476	OK
		40.19	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	22.41	0.0043	0.0271	0.159	OK
		48.51	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	27.05	0.0052	0.0271	0.192	OK
		112.31	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	62.63	0.0120	0.0271	0.443	OK
		114.55	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	63.88	0.0122	0.0271	0.450	OK
		132.42	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	73.85	0.0142	0.0271	0.524	OK
		133.07	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	74.21	0.0142	0.0271	0.524	OK
		121.55	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	67.79	0.0130	0.0271	0.480	OK
		35.88	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	20.01	0.0038	0.0271	0.140	OK
		41.08	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	22.91	0.0044	0.0271	0.162	OK
		112.31	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	62.63	0.0120	0.0271	0.443	OK
		114.89	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	64.07	0.0123	0.0271	0.454	OK
		130.58	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	72.82	0.0140	0.0271	0.517	OK
		130.13	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	72.57	0.0139	0.0271	0.513	OK
		120.54	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	67.22	0.0129	0.0271	0.476	OK
		34.63	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	19.31	0.0037	0.0271	0.137	OK
		34.23	51.0	7.75	D25	@13.0	38.98	0.0076	0.293	0.902	19.09	0.0037	0.0271	0.137	OK

· 法線直角方向鉄筋 下側

$\setminus$		Ms	d	С	配筋	As				増加	ひび割れ幅	許容ひび割れ幅		
l `	<b>\</b>	(kN·m)	(cm)	(cm)	鉄筋径 ピッチ	(cm ² )	Pw	k	j	引張応力度	W	Wa	$W/W_a$	判定
		(KIV III)	(CIII)	(GIII)	(CM)	(CIII)				(N/mm ² )	(cm)	(cm)		
		104.74	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	65.86	0.0157	0.0271	0.579	OK
		106.24	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	66.80	0.0159	0.0271	0.587	OK
		136.99	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	86.14	0.0205	0.0271	0.756	OK
		136.98	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	86.13	0.0205	0.0271	0.756	OK
		123.23	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	77.49	0.0185	0.0271	0.683	OK
		53.35	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	33.55	0.0080	0.0271	0.295	OK
		87.02	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	48.15	0.0115	0.0271	0.424	OK
		106.08	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	66.70	0.0159	0.0271	0.587	OK
		106.63	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	67.05	0.0160	0.0271	0.590	OK
		130.46	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	82.03	0.0195	0.0271	0.720	OK
		130.63	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	82.14	0.0196	0.0271	0.723	OK
		123.59	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	77.71	0.0185	0.0271	0.683	OK
		43.88	51.0	7.75	D25,D22 @26.	34.38	0.0067	0.278	0.907	27.59	0.0066	0.0271	0.244	OK
		64.83	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	35.87	0.0085	0.0271	0.314	OK
		106.08	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	58.70	0.0140	0.0271	0.517	OK
		116.68	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	64.56	0.0154	0.0271	0.568	OK
		138.54	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	76.66	0.0183	0.0271	0.675	OK
		136.70	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	75.64	0.0180	0.0271	0.664	OK
		127.69	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	70.66	0.0168	0.0271	0.620	OK
		38.69	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	21.41	0.0051	0.0271	0.188	OK
		37.09	57.7	7.75	D25,D22 @26.	34.38	0.0060	0.266	0.911	20.52	0.0049	0.0271	0.181	OK

・法線平行方向鉄筋 上側

		Ms	d	С	配	筋	As				増加	ひび割れ幅	許容ひび割れ幅		
`	\	(kN∙m)	(cm)	(cm)	鉄筋径	ピッチ	(cm ² )	Pw	k	j	引張応力度	W	$W_a$	$W/W_a$	判定
		(KIN- III)	(СШ)	(CIII)	亚大月刀1工	(cm)	(CIII)				(N/mm ² )	(cm)	(cm)		
		93.21	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	62.34	0.0163	0.0347	0.470	0K
		89.95	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	60.16	0.0157	0.0347	0.452	0K
		90.60	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	60.59	0.0158	0.0347	0.455	0K
		63.02	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	42.15	0.0110	0.0347	0.317	0K
		45.87	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	30.68	0.0080	0.0347	0.231	0K
		6.22	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	4.16	0.0011	0.0347	0.032	OK
		6.63	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	4.43	0.0012	0.0347	0.035	OK
		112.25	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	75.07	0.0196	0.0347	0.565	OK
		111.46	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	74.55	0.0195	0.0347	0.562	OK
		115.57	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	77.29	0.0202	0.0347	0.582	0K
		87.13	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	58.27	0.0152	0.0347	0.438	0K
		74.59	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	49.89	0.0130	0.0347	0.375	0K
		10.39	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	6.95	0.0018	0.0347	0.052	OK
		11.13	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	7.44	0.0019	0.0347	0.055	0K
		119.43	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	79.88	0.0209	0.0347	0.602	0K
		118.11	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	78.99	0.0206	0.0347	0.594	0K
		120.85	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	80.83	0.0211	0.0347	0.608	OK
		91.15	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	60.96	0.0159	0.0347	0.458	OK
		77.21	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	51.64	0.0135	0.0347	0.389	OK
	Ш	12.37	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	8.27	0.0022	0.0347	0.063	OK
		9.99	49.0	9.9	D19,D22	@20.0	33.68	0.0069	0.282	0.906	6.68	0.0017	0.0347	0.049	0K

・法線平行方向鉄筋 下側

$\overline{}$		Ms	d	С	配	筋	As				増加	ひび割れ幅	許容ひび割れ幅		
`	\	(kN∙m)	(cm)	(cm)	鉄筋径	ピッチ	(cm ² )	Pw	k	j	引張応力度	W	Wa	$W/W_a$	判定
		(KIN'III)	(СШ)	(CIII)	亚大月刀1宝	(cm)	(Cm)				(N/mm ² )	(cm)	(cm)		
		61.73	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	70.27	0.0163	0.0347	0.470	0K
		60.94	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	69.37	0.0161	0.0347	0.464	0K
		63.38	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	72.15	0.0168	0.0347	0.484	0K
		43.00	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	48.95	0.0114	0.0347	0.329	0K
		34.45	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	39.22	0.0091	0.0347	0.262	0K
		4.66	49.0	9.9	D22	@20.0	19.36	0.0040	0.223	0.926	5.30	0.0012	0.0347	0.035	0K
		11.92	55.7	9.9	D22	@20.0	19.36	0.0035	0.21	0.930	11.89	0.0028	0.0347	0.081	0K
		118.80	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	79.45	0.0185	0.0347	0.533	0K
		118.62	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	79.33	0.0185	0.0347	0.533	0K
		125.26	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	83.78	0.0195	0.0347	0.562	0K
		92.31	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	61.74	0.0144	0.0347	0.415	OK
		77.58	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	51.89	0.0121	0.0347	0.349	0K
		10.55	49.0	9.9	D22,D19	@20.0	33.68	0.0069	0.282	0.906	7.06	0.0016	0.0347	0.046	0K
		15.05	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	8.81	0.0021	0.0347	0.061	0K
		185.72	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	108.67	0.0254	0.0347	0.732	0K
		180.07	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	105.36	0.0246	0.0347	0.709	OK
		177.87	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	104.08	0.0243	0.0347	0.700	OK
		134.23	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	78.54	0.0183	0.0347	0.527	0K
		104.51	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	61.15	0.0143	0.0347	0.412	0K
		20.03	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	11.72	0.0027	0.0347	0.078	OK
		10.45	55.7	9.9	D22,D19	@20.0	33.68	0.0060	0.266	0.911	6.11	0.0014	0.0347	0.040	0K

# b) 港内側

港内側は省略する。

# 2) バットレス

# a) バットレスに対して垂直に作用する荷重の場合 港外側

・鉛直方向鉄筋

		Ms	d	С	配	筋	As				増加	ひび割れ幅	許容ひび割れ幅		
	$\setminus$				鉄筋径	ピッチ	2	Рw	k	j	引張応力度	W	$W_{\mathbf{a}}$	$W/W_{a}$	判定
-	$\rightarrow$	(kN·m)	(cm)	(cm)		(cm)	(cm ² )	0.0000	0.404	0.045	(N/mm ² )	(cm)	(cm)	0.000	01/
1 1		0.00 1.32	31.7	9	D13	@20.0 @20.0	6.34 6.34	0.0020	0.164 0.164	0.945	0.00 6.95	0.0000 0.0017	0.0315 0.0315	0.000	OK OK
1		2.33	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	12.27	0.0030	0.0315	0.095	OK
		2.94	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	15.48	0.0038	0.0315	0.121	OK
		3.21	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	16.90	0.0041	0.0315	0.130	OK
		3.18	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	16.74	0.0041	0.0315	0.130	OK
		2.84	31.7	9	D13 D13		6.34	0.0020	0.164	0.945	14.95	0.0037	0.0315	0.117	OK OK
1 1	$\dashv$	2.20 1.32	31.7	9	D13	@20.0 @20.0	6.34 6.34	0.0020	0.164 0.164	0.945	11.58 6.95	0.0028 0.0017	0.0315 0.0315	0.089	OK OK
1		0.37	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	1.95	0.0005	0.0315	0.016	OK
		0.00	31.7	9	D13	@20.0	6.34	0.0020	0.164	0.945	0.00	0.0000	0.0315	0.000	OK
	_	1.05	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	7.05	0.0017	0.0315	0.054	OK
		0.41	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	2.75	0.0007	0.0315	0.022	OK
1 1		0.61	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	4.09	0.0010	0.0315	0.032	OK OK
1 1		0.68	25.0 25.0	9	D13 D13	@20.0 @20.0	6.34 6.34	0.0025 0.0025	0.181 0.181	0.94	4.56 4.09	0.0011 0.0010	0.0315 0.0315	0.035	OK OK
1		0.47	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	3.15	0.0008	0.0315	0.032	OK
		0.34	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	2.28	0.0006	0.0315	0.019	OK
		0.37	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	2.48	0.0006	0.0315	0.019	OK
	_	1.05	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	7.05	0.0017	0.0315	0.054	OK OK
$\vdash$	-	2.50	31.7	9	D13	@20.0	6.34	0.0020	0.164 0.181	0.945	13.16	0.0032	0.0315	0.102	OK OK
1 1		0.44 1.76	25.0 25.0	9	D13	@20.0 @20.0	6.34 6.34	0.0025	0.181	0.94	2.95 11.81	0.0007 0.0029	0.0315 0.0315	0.022	OK OK
		1.83	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	12.28	0.0029	0.0315	0.095	OK
		1.86	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	12.48	0.0031	0.0315	0.098	OK
		1.73	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	11.61	0.0029	0.0315	0.092	OK
		1.25	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	8.39	0.0021	0.0315	0.067	OK
1		0.00	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	0.00	0.0000	0.0315	0.000	OK
	_	2.74	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	18.39	0.0045	0.0315	0.143	OK
$\vdash$	$\dashv$	7.95 2.64	31.7 25.0	9	D13	@20.0 @20.0	6.34 6.34	0.0020	0.164 0.181	0.945	41.86 17.72	0.0103 0.0044	0.0315 0.0315	0.327	OK OK
		3.76	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	25.24	0.0044	0.0315	0.140	0K
		3.72	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	24.97	0.0061	0.0315	0.194	OK
		3.32	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	22.28	0.0055	0.0315	0.175	OK
		2.20	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	14.77	0.0036	0.0315	0.114	OK
		0.17	25.0	9	D13		6.34	0.0025	0.181	0.94	1.14	0.0003	0.0315	0.010	OK
	-	4.77	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	32.02	0.0079	0.0315	0.251	0K
	$\dashv$	13.09 4.20	31.7 25.0	9	D13	@20.0 @20.0	6.34 6.34	0.0020	0.164 0.181	0.945	68.92 28.19	0.0169 0.0069	0.0315 0.0315	0.537	OK OK
1		4.57	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	30.67	0.0075	0.0315	0.238	OK
		3.96	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	26.58	0.0065	0.0315	0.206	OK
		2.44	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	16.38	0.0040	0.0315	0.127	OK
	_	0.68	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	4.56	0.0011	0.0315	0.035	OK
	_	6.56	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	44.03	0.0108	0.0315	0.343	0K
H	ᅱ	16.82 4.16	31.7 25.0	9	D13	@20.0 @20.0	6.34 6.34	0.0020 0.0025	0.164 0.181	0.945	88.56 27.92	0.0217 0.0069	0.0315 0.0315	0.689	OK OK
	$\dashv$	3.52	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	23.63	0.0058	0.0315	0.219	OK OK
		1.89	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	12.69	0.0031	0.0315	0.098	OK
		1.45	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	9.73	0.0024	0.0315	0.076	OK
	[	7.82	25.0	9	D13		6.34	0.0025	0.181	0.94	52.49	0.0129	0.0315	0.410	OK
$\vdash$	_	18.88	31.7		D13			0.0020	0.164	0.945	99.41	0.0244		0.775	OK
1 }	$\dashv$	2.20	25.0	9	D13		6.34	0.0025	0.181	0.94	14.77	0.0036		0.114	0K
1	$\dashv$	0.51 2.44	25.0 25.0	9	D13 D13		6.34 6.34	0.0025 0.0025	0.181 0.181	0.94	3.42 16.38	0.0008 0.0040		0.025	OK OK
	$\dashv$	8.39	25.0	9	D13		6.34	0.0025	0.181	0.94	56.31	0.0040		0.438	OK
		19.15	31.7	9	D13		6.34	0.0020	0.164	0.945	100.83	0.0248	0.0315	0.787	OK
		1.18	25.0	9	D13		6.34	0.0025	0.181	0.94	7.92	0.0019		0.060	OK
	_	3.76	25.0	9	D13		6.34	0.0025	0.181	0.94	25.24	0.0062	0.0315	0.197	OK
	_	8.22	25.0	9	D13		6.34	0.0025	0.181	0.94	55.17	0.0135	0.0315	0.429	OK
$\vdash$	$\dashv$	17.42	31.7	9	D13		6.34	0.0020	0.164	0.945	91.72	0.0225		0.714	0K
<del> </del>	$\dashv$	4.64 7.48	25.0 25.0	9	D13 D13		6.34 6.34	0.0025 0.0025	0.181 0.181	0.94 0.94	31.14 50.20	0.0076 0.0123		0.241	OK OK
1	$\dashv$	13.74	31.7	9	D13		6.34	0.0025	0.161	0.945	72.34	0.0123	0.0315	0.565	0K
H	寸	5.58	25.0	9	D13		6.34	0.0025	0.181	0.94	37.45	0.0092	0.0315	0.292	OK
		7.82	31.7	9	D13		6.34	0.0020	0.164	0.945	41.17	0.0101	0.0315	0.321	OK
ΧI		0.00	25.0	9	D13	@20.0	6.34	0.0025	0.181	0.94	0.00	0.0000	0.0315	0.000	OK

・水平方向鉄筋

		Ms	d	С	配角	<del>ர</del> ்	As				増加	ひび割れ幅	許容ひび割れ幅		
`	$\setminus$			, ,	鉄筋径	ピッチ	(2)	Pw	k	j	引張応力度	W	Wa	W/W _a	判定
-	$\overline{}$	(kN·m) 0.00	(cm) 33.7	(cm) 7	D13	(cm) @20.0	(cm ² ) 6.34	0.0019	0.16	0.947	(N/mm ² ) 0.00	(cm) 0.0000	(cm) 0.0245	0.000	OK
		7.82	33.7	7	D13	@20.0		0.0019	0.16	0.947	38.65	0.0079	0.0245	0.322	OK
		13.74	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	67.91	0.0140	0.0245	0.571	OK
		17.42	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	86.10	0.0177	0.0245	0.722	OK
		19.15	33.7	7 7	D13	@20.0	6.34	0.0019	0.16	0.947	94.65	0.0195	0.0245	0.796	0K
		18.88 16.82	33.7	7	D13 D13	@20.0 @20.0	6.34 6.34	0.0019	0.16 0.16	0.947 0.947	93.31 83.13	0.0192 0.0171	0.0245 0.0245	0.784	OK OK
		13.09	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	64.69	0.0171	0.0245	0.543	OK
		7.95	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	39.29	0.0081	0.0245	0.331	OK
		2.50	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	12.36	0.0025	0.0245	0.102	OK
		0.00	33.7	7	D13	020.0		0.0019	0.16	0.947	0.00	0.0000	0.0245	0.000	OK OK
	$\vdash$	5.58 7.48	27.0 27.0	7 7	D13 D13	@20.0 @20.0	6.34 6.34	0.0023	0.174 0.174	0.942	34.60 46.39	0.0071 0.0095	0.0245 0.0245	0.290	OK OK
		8.22	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	50.98	0.0095	0.0245	0.429	0K
		8.39	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	52.03	0.0107	0.0245	0.437	OK
		7.82	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	48.50	0.0100	0.0245	0.408	OK
		6.56	27.0	7	D13	@20.0		0.0023	0.174	0.942	40.68	0.0084	0.0245	0.343	OK
	H	4.77 2.74	27.0	7 7	D13 D13	@20.0 @20.0	6.34	0.0023	0.174 0.174	0.942	29.58 16.99	0.0061 0.0035	0.0245 0.0245	0.249	OK OK
	H	1.05	27.0 27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	16.99 6.51	0.0035	0.0245	0.143	OK OK
L	П	0.37	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	1.83	0.0004	0.0245	0.016	OK
		4.64	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	28.77	0.0059	0.0245	0.241	OK
	Щ	3.76	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	23.32	0.0048	0.0245	0.196	OK
	Н	2.44 1.45	27.0	7 7	D13	@20.0	-	0.0023	0.174	0.942	15.13	0.0031	0.0245	0.127	0K
		0.68	27.0 27.0	7	D13 D13	@20.0 @20.0	6.34 6.34	0.0023	0.174 0.174	0.942	8.99 4.22	0.0018	0.0245 0.0245	0.073	OK OK
		0.00	27.0	7	D13	@20.0		0.0023	0.174	0.942	1.05	0.0003	0.0245	0.008	OK
		0.00	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	0.00	0.0000	0.0245	0.000	OK
		0.37	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	2.29	0.0005	0.0245	0.020	OK
		1.32	33.7	7	D13	020.0	6.34	0.0019	0.16	0.947	6.52	0.0013	0.0245	0.053	OK OK
		1.18 0.51	27.0 27.0	7 7	D13	@20.0 @20.0	6.34 6.34	0.0023	0.174 0.174	0.942	7.32 3.16	0.0015 0.0006	0.0245 0.0245	0.061	OK OK
		1.89	27.0	7	D13	@20.0		0.0023	0.174	0.942	11.72	0.0024	0.0245	0.024	0K
		2.44	27.0	7	D13	@20.0		0.0023	0.174	0.942	15.13	0.0031	0.0245	0.127	OK
		2.20	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	13.64	0.0028	0.0245	0.114	OK
		1.25	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	7.75	0.0016	0.0245	0.065	OK
	H	0.34 2.20	27.0	7 7	D13	@20.0 @20.0	6.34	0.0023	0.174	0.942	2.11 10.87	0.0004 0.0022	0.0245 0.0245	0.016	OK OK
		2.20	33.7 27.0	7	D13	@20.0		0.0019	0.16	0.947 0.942	13.64	0.0022	0.0245	0.090	0K
		3.52	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	21.83	0.0045	0.0245	0.184	OK
		3.96	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	24.56	0.0050	0.0245	0.204	OK
		3.32	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	20.59	0.0042	0.0245	0.171	OK
		1.73	27.0	7	D13	@20.0		0.0023	0.174 0.174	0.942	10.73	0.0022	0.0245 0.0245	0.090	OK
		2.84	27.0 33.7	7 7	D13	@20.0 @20.0	6.34 6.34	0.0023	0.174	0.942	2.91 14.04	0.0006 0.0029	0.0245	0.024	OK OK
		4.16	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	25.80	0.0053	0.0245	0.216	OK
		4.57	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	28.34	0.0058	0.0245	0.237	OK
	Н	3.72	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	23.07	0.0047	0.0245	0.192	OK OK
	$\vdash$	1.86	27.0	7 7	D13	@20.0	6.34	0.0023	0.174	0.942	11.53	0.0024	0.0245	0.098	OK OK
	$\vdash$	0.61 3.18	27.0 33.7	7	D13	@20.0 @20.0	6.34 6.34	0.0023	0.174 0.16	0.942 0.947	3.78 15.72	0.0008 0.0032	0.0245 0.0245	0.033	OK OK
		4.20	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	26.05	0.0054	0.0245	0.220	OK
		3.76	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	23.32	0.0048	0.0245	0.196	OK
	Ш	1.83	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	11.35	0.0023	0.0245	0.094	OK
	$\vdash$	0.68	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	4.22	0.0009	0.0245	0.037	OK OK
	H	3.21 2.64	33.7 27.0	7 7	D13	@20.0 @20.0	6.34 6.34	0.0019	0.16 0.174	0.947 0.942	15.86 16.37	0.0033 0.0034	0.0245 0.0245	0.135	OK OK
	H	1.76	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	10.37	0.0034	0.0245	0.139	OK
		0.61	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	3.78	0.0008	0.0245	0.033	OK
	Ш	2.94	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	14.53	0.0030	0.0245	0.122	OK
	$\vdash$	0.44	27.0	7	D13	@20.0	6.34	0.0023	0.174	0.942	2.73	0.0006	0.0245	0.024	OK OK
	Н	0.41 2.33	27.0 33.7	7 7	D13	@20.0 @20.0	6.34 6.34	0.0023	0.174 0.16	0.942 0.947	2.54 11.52	0.0005 0.0024	0.0245 0.0245	0.020	OK OK
	H	1.05	27.0	7	D13	@20.0 @20.0	6.34	0.0019	0.16	0.947	6.51	0.0024	0.0245	0.098	OK OK
L		1.32	33.7	7	D13	@20.0	6.34	0.0019	0.16	0.947	6.52	0.0013	0.0245	0.053	OK
ΧI		0.00	27.0	7	D13	@20.0		0.0023	0.174	0.942	0.00	0.0000	0.0245	0.000	OK

港内側 港内側は省略する。

# b) バットレスの軸方向に作用する波圧に対して 上向きの荷重 (下からの荷重に対して)

・有効高さの計算

$$d = C1 \sqrt{\frac{M}{b_0}}$$
  $d$ 

$$b_o = 350$$
mm

		ſ	中央部バット	・レス					端部バット	レス		
	X	間	М	d'		d	X	間	М	d'		d
	番号	× (m)	(kN•m)	(mm)		(mm)	番号	x (m)	(kN·m)	(mm)		(mm)
港		0.95	112.37	450	<	1397		0.95	55.72	317	<	1397
外		1.90	449.48	900	<	2283		1.90	222.90	634	<	2283
		2.85	1011.17	1350	<	3120		2.85	501.45	950	<	3120
側		3.75	1691.96	1746	<	3960		3.75	841.31	1231	٧	3960
港		0.95	111.86	449	<	1397		0.95	55.47	316	٧	1397
内内		1.90	447.44	898	<	2283		1.90	221.89	632	٧	2283
		2.85	1006.58	1347	<	3120	·	2.85	499.18	948	<	3120
側		3.75	1726.10	1763	<	3960		3.75	858.33	1243	<	3960

以上より、バットレスは圧縮鉄筋を考慮しない単鉄筋矩形梁として計算を行う。

・上向きに荷重に対する安全照査(港外側) ここでは、港内側については省略する。

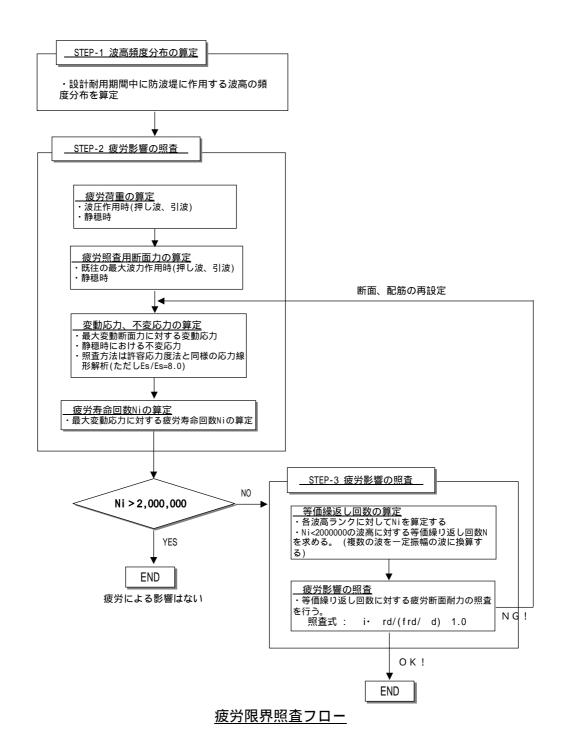
						港外側バ	ットレス			
		_		中央部バ	ットレス			端部バ、	ットレス	
部材幅 b _w		(mm)	350	350	350	350	350	350	350	350
有効高さ d		(mm)	1397	2283	3120	3960	1397	2283	3120	3960
対象鉄筋かぶ	ı) C	(mm)	79	79	79	79	79	79	79	79
設計用値 M _d		(kN/mm)	66110	264450	594920	995120	32790	131150	295050	494830
ケース			波圧							
配筋		径	D22							
	1段目	配置間隔	@100	@100	@100	@100	@100	@100	@100	@100
	TPXI	本数	3	3	3	3	3	3	3	3
		鉄筋量	1161	1161	1161	1161	1161	1161	1161	1161
		径			D19	D19			D19	D19
	2段目	本数			3	3			3	3
		鉄筋量			860	860			860	860
使用鉄筋量	A _s	$(mm^2)$	1161	1161	2021	2021	1161	1161	2021	2021
鉄筋比 pw			0.0024	0.0015	0.0019	0.0015	0.0024	0.0015	0.0019	0.0015
中立軸比 k			0.178	0.143	0.160	0.143	0.178	0.143	0.160	0.143
j=1-k/3			0.941	0.952	0.947	0.952	0.941	0.952	0.947	0.952
增加引張応力	,		43.3	104.8	99.6	130.6	21.5	52.0	49.4	64.9
ひび割れ幅		(mm)	0.080	0.194	0.185	0.242	0.040	0.096	0.092	0.120
	杵容ひび割れ幅 W _{lim (mm)}		0.277	0.277	0.277	0.277	0.277	0.277	0.277	0.277
W/W _{lim}			0.289	0.702	0.669	0.875	0.145	0.347	0.333	0.434
判	7	定	OK							

# 下向きの荷重(上からの荷重に対して)

・港外側 ここでは、港内側については省略する。

						港外側バ	シートレス			
_				中央部バ	ットレス	7071 1/37		端部バッ	ットレス	
部材幅 b _w		(mm)	1225	1700	2175	2625	788	1025	1263	1488
有効高さ d		(mm)	1351	2237	3055	3895	1351	2237	3055	3895
対象鉄筋かぶ	i) c	(mm)	90	90	90	90	90	90	90	90
設計用値 Md		(kN/mm)	15920	63680	143260	239790	7900	31590	71060	119270
ケース			吊上げ時	吊上げ時	吊上げ時	吊上げ時	吊上げ時	吊上げ時	吊上げ時	吊上げ時
配筋		径	D19	D19	D19	D19	D13	D13	D13	D13
	1段目	配置間隔	@100	@100	@100	@100	@100	@100	@100	@100
	1 + X 🗖	本数	2	2	2	2	2	2	2	2
		鉄筋量	419	419	419	419	185	185	185	185
		径			D16	D16			D13	D13
	2 段目	本数			2	2			2	2
		鉄筋量			290	290			185	185
使用鉄筋量	A _s	$(mm^2)$	419	419	709	709	185	185	370	370
鉄筋比 p _w			0.0003	0.0001	0.0001	0.0001	0.0002	0.0001	0.0001	0.0001
中立軸比 k			0.067	0.039	0.039	0.039	0.055	0.039	0.039	0.039
j=1-k/3			0.978	0.987	0.987	0.987	0.982	0.987	0.987	0.987
増加引張応力	度 se	$(N/mm^2)$	28.8	68.8	67.0	88.0	32.2	77.3	63.7	83.9
ひび割れ幅	W	(mm)	0.060	0.143	0.140	0.183	0.068	0.163	0.134	0.177
許容ひび割れ	,幅 W _{lim}	(mm)	0.315	0.315	0.315	0.315	0.315	0.315	0.315	0.315
W/W	lim		0.190	0.454	0.444	0.581	0.216	0.517	0.425	0.562
判		定	OK	OK	OK	OK	OK	OK	OK	OK

#### 3.6 疲労限界状態に対する検討


#### (1) 検討フロー

#### 1) 疲労限界照査のフロー

以下に波浪に対する疲労限界照査のフローを示す。

耐用期間中には、波高 1m 未満の波から最高波程度の波まで様々な波が発生する。

ここで、微小波浪の疲労影響を過大に評価することを避けるため、疲労限度 (Ni=2.0 $\times$ 10 6 ) を考慮するものとした。



217

### (2) フーチング

### 1) 設計断面力

フーチングの断面力は、 " 杭頭モーメントによる曲げモーメント " が支配的であるためあるため、疲労限界状態に対する検討は、最大曲げモーメントの生じるの格子点位置について疲労寿命回数を求め、2.0×10⁶回を下回るものに対して疲労限界状態の検討を行うものとする。

### a) 港外側フーチング

照査位置は下図のとおり。

断面力は、終局及び使用限界状態の場合と同様に、杭頭モーメント及び軸力によるモーメントに底面反力による曲げモーメント(三辺固定一辺自由版)を合算する。

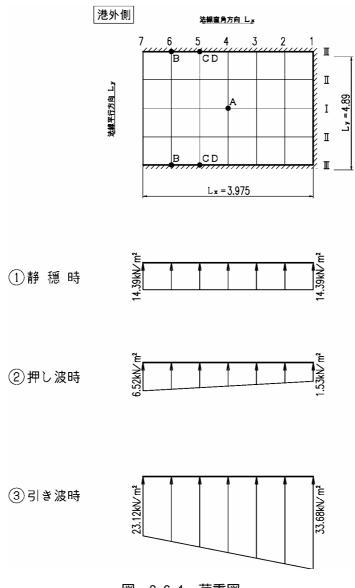



図 - 3.6.1 荷重図

## 辺長比及び曲げモーメント係数

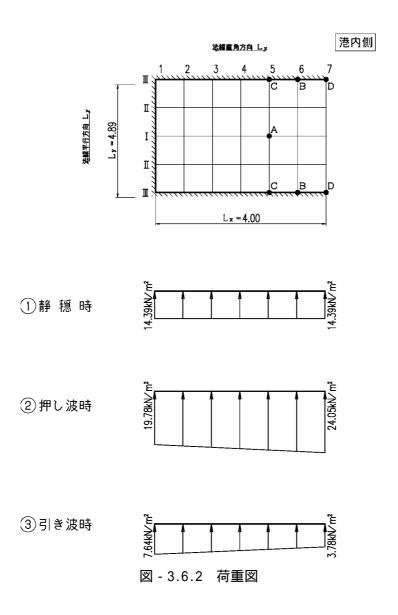
$$=\frac{Lx}{Ly}=\frac{3.975}{4.89}=0.81$$
 0.75

	格子点	三辺固定-	三辺固定一辺自由版		
	番号	等分布	三角形分布	備考	
法線直角方向		0.0080	0.0110	Α	
法級且用刀凹 		-0.0227	-0.0058	В	
计独立公式点		0.4470	0.0200	С	
法線平行方向		-0.1172	-0.0389	D	

## 曲げモーメントの計算

## ・底面反力による曲げモーメント

	設計荷重		曲げモーメント(kN・m/m)				
小小小小	ド		1,P ₂ 法線直角方向		法線直角方向法線平行方		行方向
1人 悲 			支点部	支間部	支点部	支間部	
	港外側	港内側	-	-	-		
静 穏 時	14.39	14.39	-5.16	4.48	-26.65		
押し波時	6.52	1.53	-1.88	0.95	-9.00		
引き波時	23.12	33.68	-9.26	9.49	-49.30		


## ・設計曲げモーメント

		格子点		曲げモーメン	ノト(kN・m/m)		備
		番号	杭頭モーメント	軸力	版の計算	合 計	考
	法直上側	-	0.00	0.00	4.48	4.48	Α
静	法直下側	-	0.00	0.00	-5.16	-5.16	В
穏時	法平上側	-	0.00	0.00	0.00	0.00	С
	法平下側	-	0.00	0.00	-26.65	-26.65	D
押	法直上側	-	225.52	0.00	0.95	226.47	Α
し	法直下側	-	-201.64	-11.29	-1.88	-214.81	В
波	法平上側	-	150.76	85.99	0.00	236.75	С
時	法平下側	-	-93.07	-16.85	-9.00	-118.92	D
引	法直上側	-	0.23	0.00	9.49	9.72	Α
₹ 1	法直下側	-	-2.56	0.00	-9.26	-11.82	В
波	法平上側	-	19.92	0.00	0.00	19.92	С
時	法平下側	-	-62.99	0	-49.30	-112.29	D

## b) 港内側フーチング

照査位置は下図のとおり。

断面力は、終局及び使用限界状態の場合と同様に、杭頭モーメント及び軸力によるモーメントに底面反力による曲げモーメント(三辺固定一辺自由版)を合算する。



## 辺長比及び曲げモーメント係数

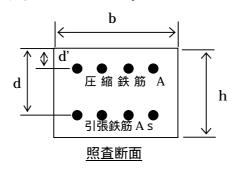
$$= \frac{Lx}{Ly} = \frac{4.00}{4.89} = 0.82 \qquad 0.75$$

	格子点	三辺固定-	三辺固定一辺自由版		
	番号	等分布	三角形分布	備考	
<b>注始</b> 古色之白		0.0080	0.0110	Α	
法線直角方向 		-0.0227	-0.0058	В	
<b>计</b> 始亚纪 <del>之</del> 白		0.4470	0.0000	С	
法線平行方向 		-0.1172	-0.0389	D	

## 曲げモーメントの計算

# ・底面反力による曲げモーメント

	設計荷重		曲げモーメント(kN・m/m)			
7 <del>1.</del> 45.	<b>大態</b> P ₁ , P ₂		法線直角方向		法線平行方向	
1人 悠			支点部	支間部	支点部	支間部
	港外側	港内側	-	-	-	
静 穏 時	14.39	14.39	-5.23	4.56	-26.98	
押し波時	19.78	24.05	-8.33	6.97	-55.06	
引き波時	7.64	3.78	-1.73	1.79	-10.54	


## ・設計曲げモーメント

		格子点		曲げモーメント(kN・m/m)			
		番号	杭頭モーメント	軸力	版の計算	合計	考
	法直上側	1	0.00	0.00	4.48	4.56	Α
静	法直下側	1	0.00	0.00	-5.16	-5.23	В
穏時	法平上側	1	0.00	0.00	0.00	0.00	С
	法平下側	1	0.00	0.00	-34.01	-34.01	D
押	法直上側	1	201.64	11.30	6.97	219.91	Α
, し	法直下側	1	-225.52	0.00	-8.33	-233.85	В
波	法平上側	1	93.07	16.86	0.00	109.93	С
時	法平下側	-	-150.76	-72.59	-55.06	-278.41	D
引	法直上側	ı	2.56	0.00	1.79	4.35	Α
ੇ ਵੇ	法直下側	-	-0.23	0.00	-1.73	-1.96	В
波	法平上側	-	25.84	0.00	0.00	25.84	С
時	法平下側	-	-19.92	0	-10.54	-30.46	D

### 2) 疲労安全性の照査

### a) 変動応力の算定

部材の変動応力度の算出は、線形解析(許容応力度法)にて行う。 基本計算式は以下のとおりである。



### [コンクリートの圧縮応力度]

$$c = \frac{M}{bd^2} \cdot \frac{1}{\frac{k}{2} \left(1 - \frac{k}{3}\right) + \frac{nP'}{k} \left(k - \frac{d'}{d}\right) \left(1 - \frac{d'}{d}\right)} \qquad (N/mm^2)$$

等価換算応力度  $c' = \frac{3}{4}$  (N/mm²)

#### [鉄筋の応力度]

引張応力度 
$$s = n c \frac{1-k}{k}$$
 (N/mm²)

圧縮応力度 
$$s' = n c \left(1 - \frac{d'}{kd}\right) (N/mm^2)$$

ここに、n;ヤング係数比 n=Es/Ec=200/25=8

Es;鉄筋のヤング係数 200kN/m²

Ec: コンクリートのヤング係数 25kN/m²

b ;部材幅 (mm)

d ; 引張鉄筋の有効高さ (mm) d'; 圧縮鉄筋の有効高さ (mm)

M ; 疲労時の設計曲げモーメント (kN·m)

As; 引張鉄筋の鉄筋量 (cm²) As'; 圧縮鉄筋の鉄筋量 (cm²) P ; 引張鉄筋の鉄筋比  $P = \frac{As}{bd}$ 

P';圧縮鉄筋の鉄筋比  $P' = \frac{As'}{bd}$ 

 $\mathbf{k}$  ; 中立軸比  $\mathbf{k} = \sqrt{n^2(P+P')^2 + 2n\left(P+P'\frac{d'}{d}\right)} - n(P+P')$ 

## 【港外側フーチング】

### ・法線平行方向上側( - )

72,113, 1 13,73		静 穏 時	押し波時	引き波時
コンクリートのヤング係数 E _c		25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	0.00	236.75	19.92
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	49.0	49.0	49.0
有刈同で	圧縮鉄筋 d'(cm)	11.0	11.0	11.0
鉄筋量	引張鉄筋 A _s (cm²)	33.68	33.68	33.68
<b></b>	圧縮鉄筋 A _s ' (cm²)	33.68	33.68	33.68
鉄筋比	引張鉄筋 P	0.00687	0.00687	0.00687
並大月刀レし	圧縮鉄筋 P'	0.00687	0.00687	0.00687
中立軸比 k		0.273	0.273	0.273
コンクリートの圧縮応力度 c (N/mm²)		0.000	7.490	0.630
等価換算応力度 _C ' (N/mm²)		0.000	5.618	0.473
鉄筋の応力度	引張鉄筋 _S (N/mm²)	0.000	159.567	13.422
ᄣᄉᄸᄭᅛᄭᆡᅜᄼᆡᅜ	圧縮鉄筋 s'(N/mm²)	0.000	10.647	0.896

### ・法線平行方向下側( - )

74 MX T 1171		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 E _C	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	26.65	118.92	112.29
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	55.7	55.7	55.7
一日刈同C	圧縮鉄筋 d'(cm)	17.7	17.7	17.7
鉄筋量	引張鉄筋 A _s (cm²)	33.68	33.68	33.68
<b></b>	圧縮鉄筋 A _s ' (cm²)	33.68	33.68	33.68
鉄筋比	引張鉄筋 P	0.00605	0.00605	0.00605
並入月刀レし	圧縮鉄筋 P'	0.00605	0.00605	0.00605
中立軸比 k		0.273	0.273	0.273
コンクリートの圧縮応力度 _c (N/mm²)		0.724	3.230	3.050
等価換算応力度 _C ' (N/mm²)		0.543	2.423	2.288
鉄筋の応力度	引張鉄筋 _S (N/mm²)	15.424	68.812	64.977
业人はハマハルノリウ	圧縮鉄筋 s' (N/mm²)	-0.950	-4.238	-4.002

# 【港内側フーチング】

### ・法線直角方向上側( - )

7公冰丘吊刀		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 E _C	25	25	25
鉄筋のヤング	係数 E _S	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	4.56	219.91	4.35
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	51.0	51.0	51.0
有別同で	圧縮鉄筋 d'(cm)	9.0	9.0	9.0
鉄筋量	引張鉄筋 A _s (cm²)	34.38	34.38	34.38
<b></b>	圧縮鉄筋 A _s ' (cm²)	38.98	38.98	38.98
鉄筋比	引張鉄筋 P	0.00674	0.00674	0.00674
並大月刀レし	圧縮鉄筋 P'	0.00764	0.00764	0.00764
中立軸比 k		0.263	0.263	0.263
コンクリートの圧縮応力度 _c (N/mm²)		0.128	6.193	0.122
等価換算応力度 _{c'} (N/mm²)		0.096	4.645	0.092
鉄筋の応力度	引張鉄筋 _S (N/mm²)	2.870	138.836	2.735
业人月月 ∨ ノルンノ   1支	圧縮鉄筋 s'(N/mm²)	0.337	16.300	0.321

## ・法線直角方向下側( - )

	7	静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Eċ	25	25	25
鉄筋のヤング	係数 E _S	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	5.23	233.85	1.96
部材幅 b (c	m)	100.0	100.0	100.0
左动宫子	引張鉄筋 d (cm)	57.7	57.7	57.7
有効高さ 	圧縮鉄筋 d'(cm)	15.7	15.7	15.7
鉄筋量	引張鉄筋 A _s (cm²)	38.98	38.98	38.98
が助里 	圧縮鉄筋 A _s ' (cm²)	34.38	34.38	34.38
鉄筋比	引張鉄筋 P	0.00676	0.00676	0.00676
が	圧縮鉄筋 P'	0.00596	0.00596	0.00596
中立軸比 k		0.278	0.278	0.278
コンクリートの圧縮応力度 _c (N/mm²)		0.124	5.537	0.046
等価換算応力度 _{c'} (N/mm²)		0.093	4.153	0.035
鉄筋の応力度	引張鉄筋 _S (N/mm²)	2.576	115.042	0.956
业人別リマノル・フノリス	圧縮鉄筋 g' (N/mm²)	0.021	0.941	0.008

## ・法線平行方向上側( - )

72,113, 1 1373		静 穏 時	押し波時	引き波時
コンクリートのヤング係数 E _C		25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	0.00	109.93	25.84
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	49.0	49.0	49.0
有別同と	圧縮鉄筋 d'(cm)	11.0	11.0	11.0
鉄筋量	引張鉄筋 A _s (cm²)	28.65	28.65	28.65
<b></b>	圧縮鉄筋 A _S ' (cm²)	33.68	33.68	33.68
鉄筋比	引張鉄筋 P	0.00585	0.00585	0.00585
並入月刀レし	圧縮鉄筋 P'	0.00687	0.00687	0.00687
中立軸比 k		0.257	0.257	0.257
コンクリートの圧縮応力度 _c (N/mm²)		0.000	3.726	0.876
等価換算応力度 _{c'} (N/mm²)		0.000	2.795	0.657
鉄筋の応力度	引張鉄筋 _s (N/mm²)	0.000	86.176	20.260
业人別以外的人	圧縮鉄筋 g' (N/mm²)	0.000	3.771	0.887

## ・法線平行方向下側( - )

		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 E _C	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊢ M (kN·m/m)	34.01	278.41	30.46
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	55.7	55.7	55.7
有別同で	圧縮鉄筋 d'(cm)	17.7	17.7	17.7
鉄筋量	引張鉄筋 A _s (cm²)	33.68	33.68	33.68
<b></b>	圧縮鉄筋 A _s ' (cm²)	28.65	28.65	28.65
鉄筋比	引張鉄筋 P	0.00605	0.00605	0.00605
並大月刀しし	圧縮鉄筋 P'	0.00514	0.00514	0.00514
中立軸比 k		0.272	0.272	0.272
コンクリートの圧縮応力度 _c (N/mm²)		0.922	7.544	0.825
等価換算応力度 _{C'} (N/mm ² )		0.692	5.658	0.619
鉄筋の応力度	引張鉄筋 _s (N/mm²)	19.742	161.530	17.665
业人別リンルいノリタ	圧縮鉄筋 _S ' (N/mm²)	-1.241	-10.156	-1.111

### (2) 疲労寿命の照査

疲労強度の算定は以下の式により行う。

・コンクリート

$$frd = k1fd \left(1 - \frac{p}{fd}\right) \left(1 - \frac{logN}{K}\right)$$

ここに、k1 ; 0.85 (圧縮及び曲げ圧縮の場合)

fd ; コンクリートの設計圧縮強度

$$fd = \frac{24}{1.3} = 18.5 \text{N/mm}^2$$

p;永久荷重時による応力度

(交番荷重を受ける場合 p=0)

k ; 10 (普通コンクリートで水に飽和される場合)

N ; 等価繰返し回数 ( 2×10⁶)

### ・鋼材

$$frd = fsrd = 190 \frac{10^a}{N^k} \left(1 - \frac{sp}{fud}\right) / s$$

ここに、 sp;永久荷重による鉄筋応力度

fud ;鉄筋の設計引張強度

$$fud = \frac{490}{1.05} = 467 \text{N/mm}^2$$

$$a = k0(0.81 - 0.003)$$

$$k = 0.12, k0 = 1.0$$

; 鉄筋公称直径 (mm)

s;1.05 (鉄筋の材料係数)

最大波高について疲労寿命を求め、次ページ以下に示す。

# 【港外側フーチング】

## 港外側フーチング 疲労限界照査結果

湾設計事例集 下巻 P.2-61

				<b>湾設計事例集</b>	ト巻 P.2-61
照査	位置		照査条件	コンクリート部	鉄 筋
		押し波		4.588	127.093
		引き波		0.197	5.464
		永久荷重による	s応力 p (N/mm2)	0.091	2.514
		変動応力 rd	(N/mm2)	4.497	124.579
			設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	上側		K	10.00	-
	- 153		設計引張強度 (N/mm2)	-	467.00
			k	-	0.12
		鉄筋条件	ko	-	1.00
			S	-	1.05
;+			鉄筋直径 (mm)	-	25.40
				-	0.734
線			疲労寿命回数	1.337E+07	2.806E+07
法線直角方向		半	间定 2.0*10^6	OK !	OK !
用方		押し波		4.022	118.389
向		引き波		0.221	6.512
		永久荷重による	S応力 p (N/mm2)	0.097	2.848
		変動応力 rd	(N/mm2)	3.925	115.541
			設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	下 側		K	10.00	-
	- 1/1		設計引張強度 (N/mm2)	-	467.00
			k	-	0.12
		鉄筋条件	ko	-	1.00
			S	-	1.05
			鉄筋直径 (mm)	-	25.40
				-	0.734
			疲労寿命回数	3.096E+07	5.225E+07
		半	刊定 2.0*10^6	OK !	OK !

	コンクリート部	鉄 筋
押し波	5.618	159.567
引き波	0.473	13.422
永久荷重による応力 p (N/mm2)	0.000	0.000
変動応力 rd (N/mm2)	5.618	159.567
設計圧縮強度 (N/mm	2) 18.50	-
コンクリート条件 k1	0.85	-
L 側	10.00	-
	2) -	467.00
k	-	0.12
		1.00
s		1.05
<b>鉄筋直径</b> (mm)		22.20
	-	0.743
線	2.675E+06	
法線 平 判定 2.0*10^6 行	OK !	OK !
17   押し波	2.423	
	2.288	
<u> 永久荷重による応力 p (N/mm2)</u>	0.543	
<u>変動応力 rd (N/mm2)</u>	1.880	53.388
設計圧縮強度(N/mm		-
コンクリート条件 <u>k1</u>	0.85	-
下 側 K K	10.00	407.00
	2) -	467.00
K   K   L   L   L   L   L   L   L   L	-	0.12
鉄筋条件	-	1.00
s 	-	1.05 22.20
	_	0.743
	5.865E+08	
<u> </u>	0K !	0K !

# 【港内側フーチング】

## 港内側フーチング 疲労限界照査結果

湾設計事例集 下巻 P.2-61

				<b>湾設計事例集</b>	ト巻 P.2-61
照査	位置		照査条件	コンクリート部	鉄 筋
		押し波		4.645	138.836
		引き波		0.092	2.735
		永久荷重による	s応力 p (N/mm2)	0.096	2.870
		変動応力 rd	(N/mm2)	4.553	136.101
			設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	上側		K	10.00	-
			設計引張強度 (N/mm2)	-	467.00
			k	-	0.12
		鉄筋条件	ko	-	1.00
			S	-	1.05
;+			鉄筋直径 (mm)	-	25.40
				-	0.734
線			疲労寿命回数	1.229E+07	1.334E+07
法線直角方向		半	J定 2.0*10^6	OK !	OK !
用方		押し波		4.153	115.042
向		引き波		0.035	0.956
		永久荷重による	応力 p (N/mm2)	0.093	2.576
		変動応力 rd	(N/mm2)	4.118	114.086
			設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	下 側		K	10.00	-
	- I		設計引張強度 (N/mm2)	-	467.00
			k	-	0.12
		鉄筋条件	ko	-	1.00
			S	-	1.05
			鉄筋直径 (mm)	-	25.40
				-	0.734
			疲労寿命回数	2.334E+07	5.836E+07
		半	<u> </u> 定 2.0*10^6	OK !	OK !

照査	位置		照査条件	コンクリート部	鉄 筋
		押し波		2.795	86.176
		引き波		0.657	20.260
		永久荷重による	S応力 p (N/mm2)	0.000	0.000
		変動応力 rd	(N/mm2)	2.795	86.176
			設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	上側		К	10.00	-
	- IKI		設計引張強度 (N/mm2)	-	467.00
			k	-	0.12
		鉄筋条件	ko		1.00
法			S		1.05
			鉄筋直径 (mm)	-	19.10
				-	0.753
法線平行方向			疲労寿命回数	1.669E+08	9.116E+08
平行			· 10^6	OK !	OK !
方		押し波		5.658	161.530
向		引き波	· <del></del>	0.619	17.665
			S応力 p (N/mm2)	0.692	19.742
		変動応力 rd	(N/mm2)	5.039	143.865
		-N. 611   1 /2 //L	設計圧縮強度 (N/mm2)	18.50	-
		コンクリート条件	k1	0.85	-
	下 側			10.00	467.00
	-		設計引張強度 (N/mm2)		467.00 0.12
		鉄筋条件	k ko	-	1.00
		亚大别赤十	KU S	-	1.00
			s 鉄筋直径 (mm)		22.20
					0.743
				4.688E+06	7.335E+06
		¥	定 2.0*10^6	0K !	0K !

最大波高について疲労寿命を求めた結果、全ての部材で2×10⁶回を上回るので、疲労破壊はない。

### (3) バットレス

### 1) 設計断面力

バットレスは、垂直方向に作用する波圧と鉛直方向に作用する波圧に対して、疲労限界状態に対する検討を行なう。最大波高で疲労寿命回数を求め、2.0×10⁶回を下回るものに対して疲労限界状態の検討を行うものとする。

### a) バットレスに対して垂直に作用する波圧による曲げモーメント

バットレスに対して垂直に作用する波圧の疲労限界状態に対する検討は、最大波高で変動応力の大きな下図に示す A ~ D の格子点位置について疲労寿命回数を求め、2.0×10⁶回を下回るものに対して疲労限界状態の検討を行うものとする。

なお、検討は港内側で代表させる。

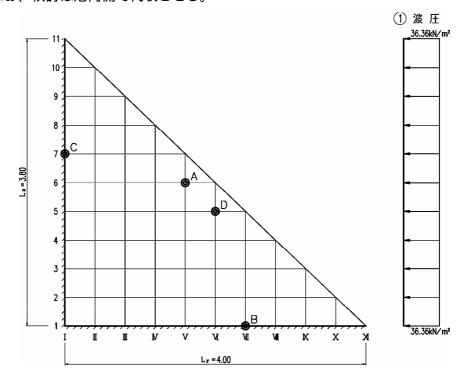
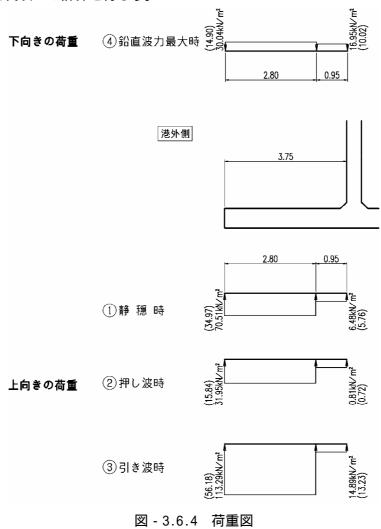



図 - 3.6.3 断面力算定モデル図

辺長比及び曲げモーメント係数


$$= \frac{Lx}{Ly} = \frac{3.80}{4.00} = 0.95$$
 1.00

	格子点		三辺固定版	備考
	番	号	等分布	1佣15
如本之白			0.0135	Α
鉛直方向			-0.0566	В
水亚大白			-0.0566	С
水平方向			0.0135	D

曲げモーメントの計算

	設計荷重	E	曲げモーメント(kN・m/m)					
 	Р	鉛直	方向	水平方向				
<b>状態</b>	$(kN/m^2)$	支点部	支間部	支点部	支間部			
	等分布	-	-	-	-			
押波時	36.36	-29.72	7.09	-29.72	7.09			
引波時	0.00	0.00	0.00	0.00	0.00			
静穏時	0.00	0.00	0.00	0.00	0.00			

b) バットレスの軸方向に作用する波圧に対する曲げモーメント 設計荷重は下図のとおり。 港内側で代表させ計算を行なう。



## 曲げモーメントの計算

曲げモーメントの算定は、下図の ~ の位置について、その位置ごとの曲げモーメントを片持ち梁として下式により算出する。

$$M(x) = \frac{W_1}{2} \cdot x^2 \quad (x \quad a)$$

$$M(x) = \frac{W_1 \cdot a}{2} \cdot (2x - a) + \frac{W_2}{2} \cdot (x - a)^2 \quad (x > a)$$

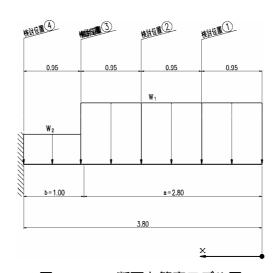



図 - 3.6.5 断面力算定モデル図

### i) 上向きの荷重に対して

## ・中央部バットレス

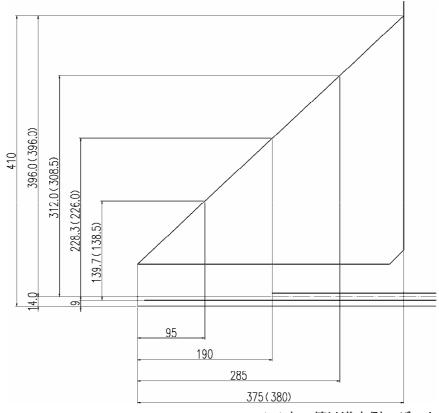
	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN•m)	位置
	70.51	6.48	0.95	2.80	1.00	31.82	
静穏時	70.51	6.48	1.90	2.80	1.00	127.27	
月光小心上寸	70.51	6.48	2.85	2.80	1.00	286.28	
	70.51	6.48	3.80	2.80	1.00	477.07	
	31.95	0.81	0.95	2.80	1.00	14.42	
押し波時	31.95	0.81	1.90	2.80	1.00	57.67	
が い <i>が</i> 及時	31.95	0.81	2.85	2.80	1.00	129.72	
	31.95	0.81	3.80	2.80	1.00	215.11	
	113.29	14.89	0.95	2.80	1.00	51.12	
口去油加	113.29	14.89	1.90	2.80	1.00	204.49	
引き波時	113.29	14.89	2.85	2.80	1.00	459.98	
	113.29	14.89	3.80	2.80	1.00	768.75	

## ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN·m)	位置
	34.97	5.76	0.95	2.80	1.00	15.78	
静穏時	34.97	5.76	1.90	2.80	1.00	63.12	
月廿亿武平寸	34.97	5.76	2.85	2.80	1.00	141.99	
	34.97	5.76	3.80	2.80	1.00	237.88	
	15.84	0.72	0.95	2.80	1.00	7.15	
押し波時	15.84	0.72	1.90	2.80	1.00	28.59	
が し <i>i</i> 及时	15.84	0.72	2.85	2.80	1.00	64.31	
	15.84	0.72	3.80	2.80	1.00	106.80	
	56.18	13.23	0.95	2.80	1.00	25.35	
日本沈吐	56.18	13.23	1.90	2.80	1.00	101.40	
引き波時	56.18	13.23	2.85	2.80	1.00	228.11	
	56.18	13.23	3.80	2.80	1.00	384.14	

## ii) 下向きの荷重に対して

## ・中央部バットレス


	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN·m)	位置
	30.04	16.95	0.95	2.80	1.00	13.56	
鉛直波力	30.04	16.95	1.90	2.80	1.00	54.22	
最大時	30.04	16.95	2.85	2.80	1.00	121.98	
	30.04	16.95	3.80	2.80	1.00	210.34	

## ・端部バットレス

	W1	W2	Х	а	b	Mx	検討
	(kN/m)	(kN/m)	(m)	(m)	(m)	(kN·m)	位置
	14.90	10.02	0.95	2.80	1.00	6.72	
鉛直波力	14.90	10.02	1.90	2.80	1.00	26.89	
最大時	14.90	10.02	2.85	2.80	1.00	60.51	
	14.90	10.02	3.80	2.80	1.00	105.14	

### 有効高さの計算

### i)上向きの荷重(下からの荷重に対して)



()内の値は港内側のバットレスを示す。

図 - 3.6.6 有効高さ

## ・C₁,C₂の算出

$$s = 196 \text{N/mm}^2$$
,  $c = 9 \text{N/mm}^2$  における  $C_1, C_2$  は下記のとおり。

$$C_{1} = \frac{{}_{s} + n \cdot {}_{c}}{n \cdot {}_{c}} \cdot \sqrt{\frac{6 \cdot n}{3 \cdot {}_{s} + 2 \cdot n \cdot {}_{c}}}$$

$$= \frac{196 + 15 \times 9}{15 \times 9} \times \sqrt{\frac{6 \times 15}{3 \times 196 + 2 \times 15 \times 9}}$$

$$C_{2} = \frac{c}{2 \cdot s} \cdot \sqrt{\frac{6 \cdot n}{3 \cdot s + 2 \cdot n \cdot c}}$$

$$= \frac{9}{2 \times 196} \times \sqrt{\frac{6 \times 15}{3 \times 196 + 2 \times 15 \times 9}}$$

$$= 0.00744$$

・有効高さの算出 有効高さd は次式により求める。

$$d = C1 \sqrt{\frac{M}{b_0}} \qquad d$$

$$b_o = 350 \text{mm}$$

	中央部バットレス						端部バットレス				
X	間	М	d '		d	X	間	М	d '		d
番号	$\times$ (m)	(kN•m)	(mm)		(mm)	番号	x (m)	(kN•m)	(mm)		(mm)
	0.95	51.12	303	<	1385		0.95	25.35	214	<	1385
	1.90	204.49	607	<	2260		1.90	101.40	427	<	2260
	2.85	459.98	910	<	3085		2.85	228.11	641	<	3085
	3.80	768.75	1177	<	3960		3.80	384.14	832	<	3960

以上より、バットレスは圧縮鉄筋を考慮しない単鉄筋矩形梁として次ページ 以降で計算を行う。

また、照査は中央部バットレスで行うものとする。

## ii) 下向きの荷重(上からの荷重に対して)

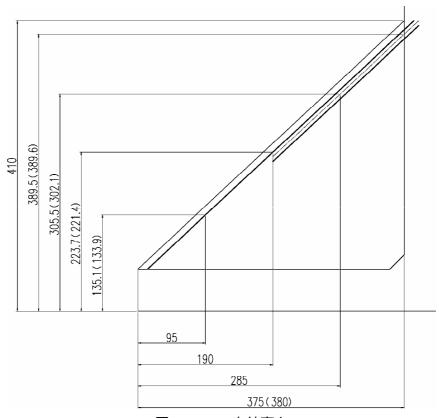



図 - 3.6.7 有効高さ

## ・T形突縁部有効幅の計算

両側にスラブがある場合 (中央部)

T形突縁部の有効幅は次式による。

$$b_e = b_o + 2 \cdot \left(b_s + \frac{1}{8} \cdot L\right)$$

ここに、

L:純スパンの2倍の長さ(片持ち梁の場合)

 $b_s: 0.20m$  $b_o: 0.35m$ 

	区 間 番号 × (m)		L	b _o	b _s	b _e
			( m )	(m)	(m)	(m)
		0.95	1.90	0.35	0.20	1.225
港内側		1.90	3.80	0.35	0.20	1.700
側		2.85	5.70	0.35	0.20	2.175
		3.80	7.60	0.35	0.20	2.650

片側にスラブがある場合 (端部) T形突縁部の有効幅は次式による。

$$b_{e} = b_{o} + b_{s} + \frac{1}{8} \cdot L$$

ここに、

L:純スパンの2倍の長さ(片持ち梁の場合)

 $b_s: 0.20m$  $b_o: 0.35m$ 

	区間		L	b _o	b _s	b _e
	番号	x (m)	(m)	(m)	(m)	(m)
		0.95	1.90	0.35	0.20	0.788
港内側		1.90	3.80	0.35	0.20	1.025
側		2.85	5.70	0.35	0.20	1.263
		3.80	7.60	0.35	0.20	1.500

### ・中立軸の算出

T形梁として中立軸の位置を次式にて算出する。

$$x = \frac{2 \cdot (n \cdot A_s \cdot d) + b_e + t^2}{2 \cdot (n \cdot A_s \cdot + b_e \cdot t)}$$

ここに、

x:中立軸の位置

be:突縁部の有効幅

t:フーチング厚 t=60cm

As :使用鉄筋量

【港内側】 As = 鉄筋純断面積×cos42.65°

中央部バットレス

, (1段配筋 D16-2本)

As =  $1.986 \text{cm}^2 \times 2 \times \text{cos} 42.65^\circ = 2.92 \text{cm}^2$ 

, (2段配筋 D16-4本)

As =  $2.92 \text{cm}^2 \times 2 = 5.84 \text{cm}^2$ 

端部バットレス

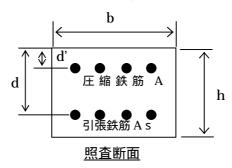
, (1段配筋 D13-2本)

As =  $1.267 \text{cm}^2 \times 2 \times \text{cos} 43.03^\circ = 1.86 \text{cm}^2$ 

, (2段配筋 D13-4本)

As =  $1.86cm^2 \times 2 = 3.72cm^2$ 

	X	間	b _e	A _s '	d	t		X _o
	番号	× (m)	(cm)	( cm ² )	(cm)	(cm)		(cm)
		0.95	122.5	2.92	133.9	60.0	>	30.6
中央部		1.90	170.0	2.92	221.4	60.0	>	30.8
部		2.85	217.5	5.84	302.1	60.0	^	31.8
		3.75	265.0	5.84	389.6	60.0	^	32.0
		0.95	78.8	1.86	133.9	60.0	>	30.6
端		1.90	102.5	1.86	221.4	60.0	^	30.9
部		2.85	126.3	3.72	302.1	60.0	^	32.0
		3.80	150.0	3.72	389.6	60.0	>	32.2


以上より、中立軸はすべて突縁内にあるので、照査は単鉄筋矩形梁として 次ページ以降で計算を行う。

また、照査は中央部バットレスで行うものとする。

### 2) 疲労安全性の照査

### a) 変動応力の算定

部材の変動応力度の算出は、線形解析(許容応力度法)にて行う。 基本計算式は以下のとおりである。



### [コンクリートの圧縮応力度]

$$c = \frac{M}{bd^2} \cdot \frac{1}{\frac{k}{2} \left(1 - \frac{k}{3}\right) + \frac{nP'}{k} \left(k - \frac{d'}{d}\right) \left(1 - \frac{d'}{d}\right)}$$
 (N/mm²)

等価換算応力度  $c' = \frac{3}{4}$  (N/mm²)

### [鉄筋の応力度]

引張応力度 
$$s=n$$
  $c\frac{1-k}{k}$   $(N/mm^2)$ 

圧縮応力度 
$$s' = n c \left(1 - \frac{d'}{kd}\right) (N/mm^2)$$

ここに、n;ヤング係数比 n=Es/Ec=200/25=8

Es;鉄筋のヤング係数 200kN/m²

Ec;コンクリートのヤング係数 25kN/m²

b ; 部材幅 (mm)

d ; 引張鉄筋の有効高さ (mm) d'; 圧縮鉄筋の有効高さ (mm)

M ;疲労時の設計曲げモーメント (kN·m)

As;引張鉄筋の鉄筋量 (cm²) As';圧縮鉄筋の鉄筋量 (cm²) P ; 引張鉄筋の鉄筋比  $P = \frac{As}{bd}$ 

P'; 圧縮鉄筋の鉄筋比  $P' = \frac{As'}{bd}$ 

k ; 中立軸比  $k = \sqrt{n^2 (P + P')^2 + 2n \left(P + P' \frac{d'}{d}\right)} - n(P + P')$ 

## バットレスの垂直方向に作用する波圧に対して

・鉛直方向・支点部(VII-①)

計画が	XXXXIII ( III )	静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト M (kN⋅m/m)	0.00	29. 72	0.00
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	31. 7	31. 7	31. 7
行列同で	圧縮鉄筋 d'(cm)	16. 7	16. 7	16. 7
鉄筋量	引張鉄筋 A _s (cm²)	6. 34	6. 34	6. 34
奶里	圧縮鉄筋 A _s ' (cm²)	6. 34	6, 34	6.34
鉄筋比	引張鉄筋 P	0. 00200	0. 00200	0. 00200
业人用分工	圧縮鉄筋 P'	0.00200	0. 00200	0.00200
中立軸比 k		0. 191	0. 191	0. 191
コンクリートの圧縮応力度 σ _c (N/mm²)		0.000	3. 886	0.000
等価換算応力度 $\sigma_{\rm C}$ ' $({ m N/mm}^2)$		0.000	2. 915	0.000
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	0.000	131. 676	0.000
シベカがマンルロフナル交	圧縮鉄筋 σς'(N/mm²)	0.000	-54.659	0.000

### ・鉛直方向・支間部(V-⑥)

31 E 27 I N	XIFITH ( T )	静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト M (kN⋅m/m)	0.00	7.09	0.00
部材幅 b (c	m)	100.0	100.0	100.0
有効高さ	引張鉄筋 d (cm)	25. 0	25. 0	25. 0
有効向さ	圧縮鉄筋 d'(cm)	10.0	10.0	10.0
鉄筋量	引張鉄筋 A _s (cm²)	6. 34	6. 34	6.34
<b></b>	圧縮鉄筋 A _s ' (cm²)	6. 34	6. 34	6. 34
鉄筋比	引張鉄筋 P	0. 00254	0. 00254	0. 00254
业大月月12日	圧縮鉄筋 P'	0. 00254	0. 00254	0. 00254
中立軸比 k		0. 201	0. 201	0. 201
コンクリートの圧縮応力度 σ _c (N/mm²)		0.000	1. 389	0.000
等価換算応力度 σ (N/mm²)		0.000	1.042	0.000
鉄筋の応力度	引張鉄筋 σ _s (N/mm²)	0.000	44. 172	0.000
型人 別月 ♥フルロフ 月   交	圧縮鉄筋 σ _S '(N/mm²)	0.000	-11.001	0.000

## ・水平方向・支点部(I-⑦)

		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト М (kN⋅m/m)	0.00	29. 72	0.00
部材幅 b (c	m)	100.0	100.0	100. 0
有効高さ	引張鉄筋 d (cm)	33. 7	33. 7	33. 7
行別同で	圧縮鉄筋 d'(cm)	14. 7	14. 7	14. 7
鉄筋量	引張鉄筋 A _s (cm²)	6. 34	6. 34	6. 34
<b></b>	圧縮鉄筋 A _s ' (cm²)	6. 34	6. 34	6. 34
鉄筋比	引張鉄筋 P	0.00188	0.00188	0.00188
业人用刀工口	圧縮鉄筋 P'	0.00188	0.00188	0.00188
中立軸比 k		0. 180	0. 180	0. 180
コンクリートの圧縮応力度 σ _c (N/mm²)		0.000	3.608	0.000
等価換算応力度 $\sigma_{c}$ ' $(N/mm^{2})$		0.000	2. 706	0.000
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	0.000	131. 492	0.000
W N N N ∨ フ N い フ J / J / J / J / J / J / J / J / J / J	圧縮鉄筋 σ _S '(N/mm²)	0.000	-41, 083	0.000

## ・水平方向・支間部(VI-⑤)

		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト M (kN⋅m/m)	0.00	7.09	0.00
部材幅 b (ci	m)	100. 0	100.0	100. 0
有効高さ	引張鉄筋 d (cm)	27. 0	27. 0	27. 0
有効向さ	圧縮鉄筋 d'(cm)	8.0	8. 0	8. 0
鉄筋量	引張鉄筋 A _s (cm²)	6. 34	6. 34	6. 34
<b></b>	圧縮鉄筋 As' (cm²)	6. 34	6. 34	6. 34
鉄筋比	引張鉄筋 P	0.00235	0.00235	0.00235
业人用刀工口	圧縮鉄筋 P'	0. 00235	0.00235	0. 00235
中立軸比 k		0. 186	0. 186	0. 186
コンクリートの圧縮応力度 $\sigma_{\mathbb{C}}$ $(N/mm^2)$		0.000	1. 225	0.000
等価換算応力度 σ _c '(N/mm²)		0.000	0. 919	0.000
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	0.000	42. 888	0.000
<b>欧州バックルレノナ</b> 技	圧縮鉄筋 σ _S '(N/mm²)	0.000	-5.811	0.000

## バットレスの軸方向に作用する波圧に対して

## ・上向きの荷重・検討位置②

		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト M (kN·m/m)	127. 27	57.67	204. 49
部材幅 b (c	m)	35. 0	35. 0	35. 0
有効高さ	引張鉄筋 d (cm)	226. 0	226. 0	226. 0
有効同で	圧縮鉄筋 d'(cm)	10.0	10.0	10.0
鉄筋量	引張鉄筋 A _s (cm²)	11.61	11.61	11.61
<u> </u>	圧縮鉄筋 A _s ' (cm²)	2. 92	2, 92	2. 92
鉄筋比	引張鉄筋 P	0. 00147	0. 00147	0. 00147
业人用万工口	圧縮鉄筋 P'	0. 00037	0. 00037	0.00037
中立軸比 k		0.140	0.140	0. 140
コンクリートの圧縮応力度 $\sigma_{c}$ $(N/mm^{2})$		1, 037	0.470	1.666
等価換算応力度 σ c'(N/mm²)		0.778	0. 353	1. 250
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	50. 961	23. 097	81.872
■ M M M M M M M M M M M M M M M M M M M	圧縮鉄筋 σ _S '(N/mm²)	5. 674	2, 572	9. 116

## ・上向きの荷重・検討位置④

工同での同		静 穏 時	押し波時	引き波時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト M (kN⋅m/m)	477. 07	215. 11	768. 75
部材幅 b (c	m)	35.0	35. 0	35. 0
有効高さ	引張鉄筋 d (cm)	396. 0	396. 0	396. 0
有別同さ	圧縮鉄筋 d'(cm)	10. 0	10.0	10.0
鉄筋量	引張鉄筋 A _s (cm²)	20. 21	20. 21	20. 21
<b></b>	圧縮鉄筋 As' (cm²)	5. 84	5. 84	5. 84
鉄筋比	引張鉄筋 P	0.00146	0.00146	0.00146
业人用刀工L	圧縮鉄筋 P'	0.00042	0.00042	0. 00042
中立軸比 k		0. 139	0. 139	0. 139
コンクリートの圧縮応力度 σ _C (N/mm²)		1. 260	0.568	2. 031
等価換算応力度 $\sigma_{c}$ ' $(N/mm^{2})$		0. 945	0.426	1. 523
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	62. 438	28. 147	100.644
まハカガマンルいフナル文	圧縮鉄筋 σ _S '(N/mm²)	8. 249	3.718	13. 296

## ・下向きの荷重・検討位置②

		静 穏 時	押し・引き波時	鉛直波圧時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	⊦ M (kN·m/m)	0.00	0.00	54. 22
部材幅 b (ci	m)	170.0	170. 0	170. 0
有効高さ	引張鉄筋 d (cm)	221. 4	221. 4	221. 4
行別同で	圧縮鉄筋 d'(cm)	10.0	10. 0	10. 0
鉄筋量	引張鉄筋 A _s (cm²)	2. 92	2. 92	2. 92
奶那里	圧縮鉄筋 A _s ' (cm²)	11.61	11.61	11.61
鉄筋比	引張鉄筋 P	0.00008	0. 00008	0.00008
业人别开工	圧縮鉄筋 P'	0.00031	0.00031	0.00031
中立軸比 k		0.036	0.036	0.036
コンクリートの圧縮応力度 σ _c (N/mm²)		0.000	0.000	0. 379
等価換算応力度 σ _c '(N/mm²)		0.000	0.000	0. 284
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	0.000	0.000	81. 190
政が少心力反	圧縮鉄筋 σs'(N/mm²)	0.000	0.000	-0.772

### ・下向きの荷重・検討位置④

	生 快们应应包	静 穏 時	押し・引き波時	鉛直波圧時
コンクリート	のヤング係数 Ec	25	25	25
鉄筋のヤング	係数 E _s	200	200	200
ヤング係数比	n	8	8	8
設計モーメン	ト М (kN⋅m/m)	0.00	0.00	210.34
部材幅 b (c	m)	265.0	265. 0	265.0
有効高さ	引張鉄筋 d (cm)	389. 6	389. 6	389. 6
1月2月日で	圧縮鉄筋 d'(cm)	10.0	10.0	10.0
鉄筋量	引張鉄筋 A _s (cm²)	5.84	5. 84	5.84
<b></b>	圧縮鉄筋 As' (cm²)	20. 21	20. 21	20. 21
鉄筋比	引張鉄筋 P	0.00006	0. 00006	0.00006
<b>业大用</b> 加工	圧縮鉄筋 P'	0. 00020	0. 00020	0. 00020
中立軸比 k		0.030	0.030	0.030
コンクリートの圧縮応力度 σ _C (N/mm²)		0.000	0.000	0.347
等価換算応力度 $\sigma_{c}$ ' $(N/mm^{2})$		0.000	0.000	0. 260
鉄筋の応力度	引張鉄筋 σ _S (N/mm²)	0.000	0.000	89. 757
欧州(ツル)	圧縮鉄筋 σ _S '(N/mm²)	0,000	0.000	0.401

### 3) 疲労寿命の照査

疲労強度の算定は以下の式により行う。

・コンクリート

$$frd = k1fd \left(1 - \frac{p}{fd}\right) \left(1 - \frac{logN}{K}\right)$$

ここに、k1; 0.85 (圧縮及び曲げ圧縮の場合)

fd ; コンクリートの設計圧縮強度

$$fd = \frac{24}{1.3} = 18.5 \text{N/mm}^2$$

p; 永久荷重時による応力度

(交番荷重を受ける場合 p=0)

k ; 10 (普通コンクリートで水に飽和される場合)

N ; 等価繰返し回数 ( 2×10⁶)

・鋼材

$$frd = fsrd = 190 \frac{10^a}{N^k} \left(1 - \frac{sp}{fud}\right) / s$$

ここに、 sp;永久荷重による鉄筋応力度

fud ;鉄筋の設計引張強度

$$fud = \frac{490}{1.05} = 467 \text{N/mm}^2$$

$$a = k0(0.81 - 0.003)$$

$$k = 0.12, k0 = 1.0$$

; 鉄筋公称直径 (mm)

s;1.05 (鉄筋の材料係数)

最大波高について疲労寿命を求め、次ページ以下に示す。

## a) バットレスの垂直方向に作用する波圧に対して

## バットレス 疲労限界照査結果

港湾設計事例集「	下巻	Р.	2-61
----------	----	----	------

				港湾設計事例集	下巻 P.2-61
照査位置			照查条件	コンクリート音阝	鉄 筋
		押し波		2. 915	131. 676
		引き波		0.000	0, 000
		永久荷重による	応力σp (N/mm2)	0.000	0.000
		変動応力σrd	(N/mm2)	2. 915	131. 676
			設計圧縮強度(N/mm2)	18. 50	_
		コンクリート条件	k1	0.85	_
	十上动		K	10. 00	_
	支 点 部 I-①		設計引張強度(N/mm2)	_	467. 00
			k	_	0. 12
		鉄筋条件	ko	_	1.00
			γs	_	1.05
			鉄筋直径 φ (mm)	_	12. 70
			α	_	0, 772
鉛		疲労寿命回数		1. 400E+08	3, 835E+07
鉛 直 方		半	引定 ≦2.0*10 [^] 6	ок !	OK !
方 向		押し波		1. 042	44, 172
1-1		引き波		0, 000	0.000
		永久荷重による応力σp(N/mm2)		0.000	0.000
		変動応力σrd (N/mm2)		1. 042	44. 172
			設計圧縮強度(N/mm2)	18. 50	_
		コンクリート条件	k1	0.85	_
	支間部		K	10.00	_
	1-3		設計引張強度(N/mm2)	_	467. 00
			k	_	0. 12
		鉄筋条件	ko	_	1.00
			γs	_	1.05
			鉄筋直径 φ (mm)	_	12. 70
			$\alpha$	_	0. 772
			疲労寿命回数	2. 175E+09	3. 442E+11
		半	川定 ≦2.0*10 ⁶	OK !	OK !

照査位置		照查条件		コンクリート部	鉄 筋
		押し波		2. 706	131. 492
		引き波		0.000	0.000
		永久荷重による	i応力σp (N/mm2)	0.000	0.000
		変動応力σrd (N/mm2)		2, 706	131. 492
			設計圧縮強度(N/mm2)	18. 50	_
		コンクリート条件	k1	0. 85	
	 		K	10.00	
	支 点 部   <b>Ⅲ</b> −⑦		設計引張強度(N/mm2)	_	467. 00
			k	_	0, 12
		鉄筋条件	ko	_	1.00
			γs	_	1.05
			鉄筋直径φ(mm)	_	12. 70
			α	_	0. 772
水		疲労寿命回数		1. 902E+08	3.880E+07
水平方向		判定 ≦2.0*10^6		ок !	ок!
方向	支 間 部 I - ⑦	押し波		0. 919	42, 888
1-1		引き波		0.000	0.000
		永久荷重による応力σp(N/mm2)		0.000	0.000
		変動応力σrd (N/mm2)		0. 919	42. 888
		コンクリート条件	設計圧縮強度(N/mm2)	18. 50	
			k1	0. 85	
			K	10. 00	
		鉄筋条件	設計引張強度(N/mm2)	_	467. 00
			k	_	0. 12
			ko	_	1. 00
			γs	_	1. 05
			鉄筋直径 φ (mm)	_	12. 00
			α	_	0. 774
		疲労寿命回数		2. 604E+09	4. 573E+11
		判定 ≦2.0*10^6		ок!	OK!

## b) バットレスの軸方向に作用する波圧に対して

バットレス 疲労限界照査結果

港湾設計事例集	下巻	P	2-6	31
		г.	4 1	JΙ

				港湾設計事例集	ト巻 P. 2-61
照查	照査位置		照查条件		鉄 筋
		押し波	押し波		23. 097
		引き波	引き波		81. 872
		永久荷重による	永久荷重による応力σp (N/mm2)		50. 961
		変動応力 σ rd	変動応力σrd (N/mm2)		58. 775
			設計圧縮強度(N/mm2)	18. 50	_
		コンクリート条件	k1	0. 85	_
			K	10.00	_
	2		設計引張強度(N/mm2)	_	467. 00
			k	_	0. 12
		鉄筋条件	ko	_	1.00
			γs	_	1.05
ĺ	İ		鉄筋直径φ(mm)	_	22. 20
			$\alpha$	_	0. 743
上向		疲労寿命回数		2. 538E+09	6. 970E+09
8		判定 ≦2.0*10^6		OK !	OK !
上向きの荷重	4	押し波		0. 426	28. 147
重		引き波		1. 523	100. 644
		永久荷重による応力σp (N/mm2)		0. 945	62. 438
		変動応力σrd (N/mm2)		1. 097	72. 497
		コンクリート条件	設計圧縮強度(N/mm2)	18, 50	_
			k1	0. 85	_
			K	10.00	_
		鉄筋条件	設計引張強度(N/mm2)	_	467. 00
			k	_	0. 12
			ko	_	1.00
			γs	_	1.05
			鉄筋直径φ(mm)	_	22. 20
			α	_	0. 743
			疲労寿命回数		9. 607E+08
		+	判定 ≦2.0*10^6		ок !

照査位置			照查条件		鉄 筋
		押し波・引き液	押し波・引き波		0.000
		鉛直波圧		0. 383	82. 047
		永久荷重による	る応力σp (N/mm2)	0.000	0.000
		変動応力σrd	変動応力σrd (N/mm2)		82, 047
			設計圧縮強度(N/mm2)	18. 50	_
		コンクリート条件	k1	0. 85	
			K	10. 00	
	2		設計引張強度(N/mm2)	_	467.00
			k	_	0. 12
		鉄筋条件	ko	_	1.00
			γs	_	1.05
			鉄筋直径 φ (mm)	_	15. 90
下向			α	_	0.762
		疲労寿命回数		5. 707E+09	1. 631E+09
きの		判定 ≦2.0*10^6		ок !	OK !
の 荷	4	押し波・引き波		0.000	0.000
重		鉛直波圧		0. 344	88. 981
		永久荷重による応力σp (N/mm2)		0.000	0.000
		変動応力σrd (N/mm2)		0. 344	88, 981
		コンクリート条件	設計圧縮強度(N/mm2)	18. 50	
			k1	0. 85	
			K	10. 00	
		鉄筋条件	設計引張強度 (N/mm2)	_	467. 00
			k	_	0. 12
			ko	_	1.00
			γs	_	1.05
			鉄筋直径φ(mm)	_	15. 90
			α	_	0. 762
		疲労寿命回数		6. 043E+09	8. 296E+08
			判定 ≦2.0*10^6	OK !	OK!

最大波高について疲労寿命を求めた結果、全ての部材で $2\times10^6$ 回を上回るので、疲労破壊はない。

#### 3.7 杭頭固定金具の検討

### (1) 杭頭部鋼材の設計

#### 1) 設計条件

#### a) 取付け方法

杭頭部を予め補強及び杭打設が容易になるように設置されたテーパー加工された鋼材で被覆された鉄筋コンクリート躯体を所定の位置に設置後、取付鋼材で加工されたH形杭を 所定の深度まで打設後両者をピンにより接合する。

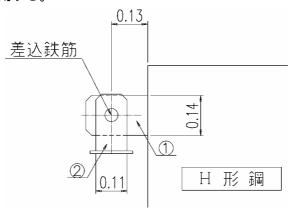
#### b) 検討個所と検討方法

検討個所は、取付け鋼材とその溶接部について行う。また、杭頭部鋼材の検討方法は、 許容応力度法とする。

### c) 鋼材の腐食速度と腐食代

鋼材の取付け位置は、 $-1.4m \sim -2.3m$  のため腐食速度を 0.2mm/年とし耐用年数 50 年間 電気防食率 90% ) として腐食代  $t_c$ を下記のように示す。

#### d) 使用材料


種 別	材質	サイズ	
H形鋼杭	S H K 490	H -492×465×15×20	
プレート	S S 400	t=9mm ~ 28mm	
コンクリート躯体	$f_{ck} = 24  \text{N}  / \text{mm}^2$		

### e) 杭頭部の断面力

基本設計で算出された杭1本当りの杭頭部の断面力は下記のとおり。

#### 2) プレートの検討

プレートは、H形杭1本当りに4箇所取付け、ピンを介しコンクリート躯体に連結される。プレートは、下図のように杭に作用する軸力により基部に曲げモーメント、引張力、せん断力が作用する。



### a) 設計荷重

杭 1 本当り 231.93kN/本作用するものとして、これを 4 枚のプレートで均等に分担しプレート 1 枚当り P = 231.93/4 = 57.98kN/本とする。

#### b) 部材の設定

プレートの肉厚は、腐食代(片側 1mm)を考慮すると計算上の板厚を t = 25 - 2 = 23mm と し 2 枚取付ける。

#### c) 応力度計算

曲げモーメントに対して

・部材の断面係数 Z (腐食後 t = 23m , h = 140 - 2 = 138mm)

$$Z = \frac{b \cdot h^2}{6} = \frac{23 \times 138^2}{6} = 73002 \text{mm}^3$$

・曲げモーメント M

$$M = P \cdot a = 57.98 \times 0.13 = 7.54 \text{kN} \cdot \text{m} = 7.54 \times 10^6 \text{N} \cdot \text{mm}$$

・曲げ応力度

$$= \frac{M}{Z} = \frac{7.54 \times 10^6}{73002} = 103N/mm^2 < sa = 140N/mm^2$$

引張力に対して

$$= \frac{P}{A} = \frac{57.98 \times 10^3}{(43 \times 2) \times 23} = 29 \text{N/mm}^2 < t_a = 140 \text{N/mm}^2$$

せん断力に対して

$$= \frac{S}{\Delta} = \frac{57.98 \times 10^3}{38 \times 23 \times 2} = 33 \text{N/mm}^2 < a = 80 \text{N/mm}^2$$

#### d) 溶接部の検討

H形杭とプレートとの溶接部に、曲げモーメントが発生するとした場合、すみ肉溶接では下記のように許容値を満足しない。

・s = 15mm のすみ肉場合(H杭フランジt=15mm に合わせ)

$$a = \frac{s}{\sqrt{2}} = \frac{15}{\sqrt{2}} = 10.6 \text{mm}$$

よって、すみ肉溶接部の断面係数Zは、下記のとおり。

$$Z = \frac{b \cdot h^{2}}{6} = \frac{10.6 \times 2 \times 108^{2}}{6} = 41213 \text{mm}^{3}$$

$$= \frac{M}{7} = \frac{7.54 \times 10^{6}}{41213} = 183 \text{N/mm}^{2} > \text{sa} = 140 \text{N/mm}^{2} \text{ out}$$

よって、すみ肉溶接では断面が成立しないため、突き合わせ溶接とする。 突き合せ溶接部の断面係数は、15mm を有効として以下のとおり。

$$Z = \frac{b \cdot h^{2}}{6} = \frac{15 \times 2 \times 108^{2}}{6} = 58320 \text{mm}^{3}$$

$$= \frac{M}{7} = \frac{7.54 \times 10^{6}}{58320} = 129 \text{N/mm}^{2} \quad < \quad \text{sa} = 140 \text{N/mm}^{2} \quad \text{o k}$$

### 3) ピンの設計 (差込鉄筋)

ピンは、両端をコンクリートとの取付けプレートに単純に支持された梁として検討する。

#### a) 断面力

『道路橋示方書・同解説( 共通編 鋼橋編,平成 14 年 3 月, P 147, 148)』を参照 し曲げモーメント、せん断力、支圧について検討する。

曲げモーメント

$$M = \frac{P \cdot L}{4} = \frac{57.98 \times (0.042 + 0.025)}{4} = 0.97 \text{kN} \cdot \text{m}$$

せん断力及び引張力

$$S = P = 57.98kN$$

#### b) 断面性能

46mm に対して両側で 2mm の腐食代を考慮し計算上は、 44mm とする。 断面係数

$$Z = \frac{\times D^3}{32} = \frac{\times 44^3}{32} = 8363 \text{mm}^3$$

せん断面積

$$A = \frac{D^2}{4} = \frac{\times 44^2}{4} = 1521 \text{mm}^2$$

支圧面積

$$A_0 = 25 \times 44 = 1100 \text{ mm}^2$$

#### c) 応力度

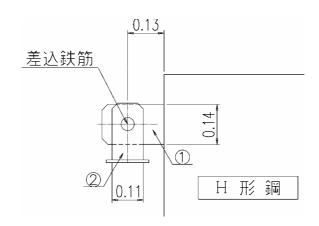
部材の材質を SS400 とする。

曲げ応力度に対して

$$= \frac{1}{Z} = \frac{0.97 \times 10^6}{8363} = 116 \text{N/mm}^2 < \text{sa} = 140 \text{N/mm}^2$$

せん断力に対して

2面せん断として計算する。


$$= \frac{P}{A} = \frac{57.98 \times 10^{3}}{1521 \times 2} = 19N/mm^{2} < sa = 80N/mm^{2}$$

支圧応力度に対して

$$=\frac{P}{A_o}=\frac{57.98\times10^3}{1110}=53N/mm^2<$$
 sa  $=210N/mm^2$ 

### 4). プレートの検討

プレートは、コンクリート躯体に取付けられ、杭に作用した軸力を プレート、ピン(両方向に長穴加工したプレート)を介し伝達される。プレートは、下図のように杭に作用する軸力により基部に曲げモーメント、引張力、せん断力が作用する。



#### a) 設計荷重

プレート 1 枚当リ P = 57.99/2 = 29.00kN/枚

b) 部材の設定

プレートの肉厚は、腐食代(片側 1mm)を考慮すると計算上の板厚を t = 25 - 2 = 23mm と する。

c) 応力度計算

曲げモーメントに対して

・部材の断面係数 Z (腐食後 t = 23m , h = 110 - 2 = 108mm)

$$Z = \frac{b \cdot h^2}{6} = \frac{23 \times 108^2}{6} = 44712 \text{mm}^3$$

・曲げモーメント M

水平方向の長穴による移動可能寸法を 50mm とすると M = P・a = 29.00×0.05 = 1.45kN・m = 1.45×10⁶ N・mm

・曲げ応力度

$$= \frac{M}{Z} = \frac{1.45 \times 10^6}{44712} = 32N/mm^2 < sa = 140N/mm^2$$

引張力に対して

$$= \frac{P}{A} = \frac{29.00 \times 10^3}{(110 - 50 - 4) \times 23} = 23N/mm^2 < t_{ta} = 140N/mm^2$$

せん断力に対して

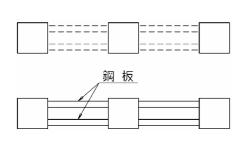
$$=\frac{S}{A}=\frac{29.00\times10^3}{38\times23\times2}=17N/mm^2<$$
 a = 80N/mm²

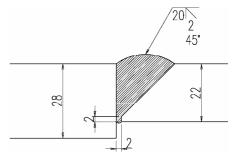
## d) 溶接部の検討

躯体とプレートとの溶接部に、曲げモーメントが発生するとした場合をすみ肉溶接で検 討する。

・s = 9mm のすみ肉場合(躯体ベースプレート t = 9mm に合わせ)

$$a = \frac{s}{\sqrt{2}} = \frac{9}{\sqrt{2}} = 6.4 \text{mm}$$


よって、すみ肉溶接部の断面係数Zは、下記のとおり。


$$Z = \frac{b \cdot h^{2}}{6} = \frac{6.4 \times 2 \times 108^{2}}{6} = 24883 \text{mm}^{3}$$

$$= \frac{M}{Z} = \frac{1.45 \times 10^{6}}{24883} = 58 \text{N/mm}^{2} > \text{sa} = 80 \text{N/mm}^{2} \text{ o k}$$

#### (2) 開口部により切断された主鉄筋の補強

フーチング部の法線平行方向の鉄筋が、開口部によって切断されているので、この抜けた分を補強するために開口部に鋼板を配置する。よって、ここではその補強のために必要な鋼板の 断面積を求める。





#### ・切断される部分の必要鉄筋量

・必要鉄筋量に対する全強

$$T = 1935.5 \text{mm}^2 \times 196 \text{ N} / \text{mm}^2 = 379358 \text{N}$$

・鋼材の必要断面積

$$A_s = \frac{379358}{140} = 2710 \text{mm}^2$$

よって、PL - 22×70を2本使用すると、

$$A_s = 22 \times 70 \times 2 = 3080 \text{mm}^2 > A_s = 2710 \text{mm}^2$$

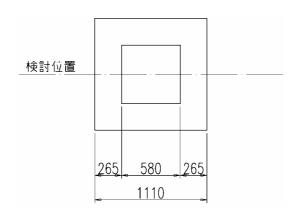
・溶接部の検討

$$_{s} = \frac{T}{A_{s'}} = \frac{379358}{22 \times 70 \times 2} = 123 \text{N/mm}^{2} < s_{a} = 140 \text{N/mm}^{2}$$

以上の結果より、PL - 22×70を2本、開口部間に配置する。

# (3) 鉄筋を溶接する鋼板の検討

1 枚の鋼板に最大 D25(SD345)を 9 本溶接するため、この鉄筋の引張力に鋼板が耐えるように 設計する。


・鉄筋の全強(T,)

$$A_s = 506.7 \text{mm}^2/\text{$^\circ$} D25(\text{SD345})$$
  
 $T_r = {^\circ$} A_s {^\circ$} n = 196 \times 506.7 \times 9 = 893.82 \times 10^3 \text{N}$ 

・鋼板の必要最小幅

鋼板の厚さを 28mm とすると

$$B = \frac{893.82 \times 10^3}{28 \times 140} = 228 \text{mm} < 2 \times 265 = 530 \text{mm}$$
 0.K.



# (4) 鋼板と鉄筋の溶接の検討

・溶接部の許容せん断応力度

$$_{\rm a} = 80 \rm N/mm^2$$

溶接は製作ヤードにて信頼性の施工が出来るものとして、現場溶接として母材強度の80%ではなく、100%とれるものとする。

・鉄筋1本当りの全強度引張力 (SD345)

$$T_r = _s \cdot A_s$$

ここに

s; 引張力応力度 196N/ mm²

プレートに溶接される鉄筋は、D25、D22、D19でありまとめると下表のとおり。

鉄筋径	$A_s (mm^2)$	T _r (N)
D 25	506.7	$99.31\times10^3$
D 22	387.1	$75.87 \times 10^{3}$
D 19	285.5	$55.96 \times 10^{3}$

# 必要溶接長L

$$L = \frac{T_r}{2 \cdot a \cdot a}$$

鉄筋毎の溶接サイズ、のど厚について下表に示す。

鉄筋径	溶接サイズ	のど厚
D 25	S=13mm	$a = 13 / \sqrt{2} = 9.2 \text{mm}$
D 22	S=11mm	$a = 11 / \sqrt{2} = 7.8 \text{mm}$
D19	S=10mm	$a = 10 / \sqrt{2} = 7.1 \text{mm}$

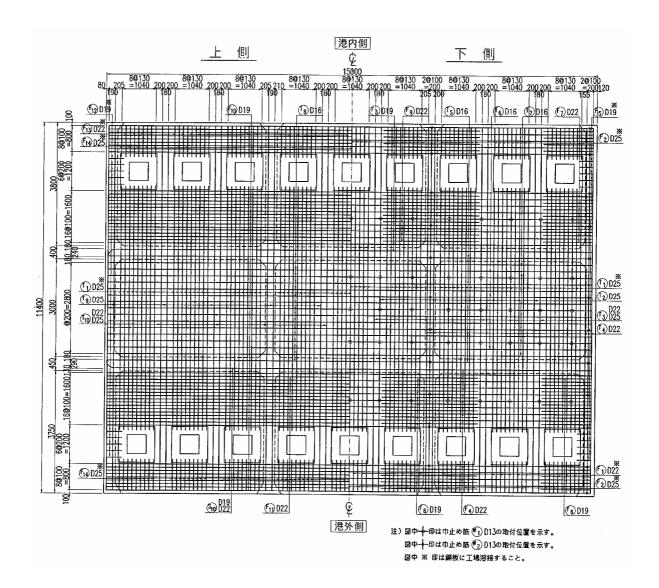
· D25

$$L = \frac{T_r}{2 \cdot a \cdot a} = \frac{99.31 \times 10^3}{2 \times 80 \times 9.2} = 67.5 \text{mm}$$

• D22

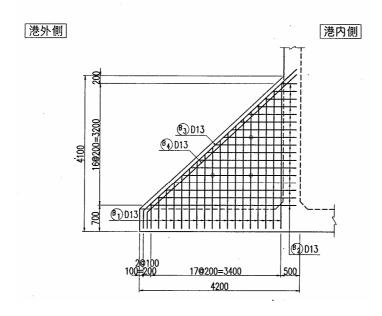
$$L = \frac{T_r}{2 \cdot a \cdot a} = \frac{75.87 \times 10^3}{2 \times 80 \times 7.8} = 60.8 \text{mm}$$

• D19

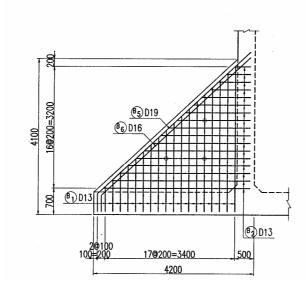

$$L = \frac{T_r}{2 \cdot a \cdot a} = \frac{55.96 \times 10^3}{2 \times 80 \times 7.1} = 49.3 \text{mm}$$

したがって、若干の余裕を考慮し、溶接長 90mm とする。

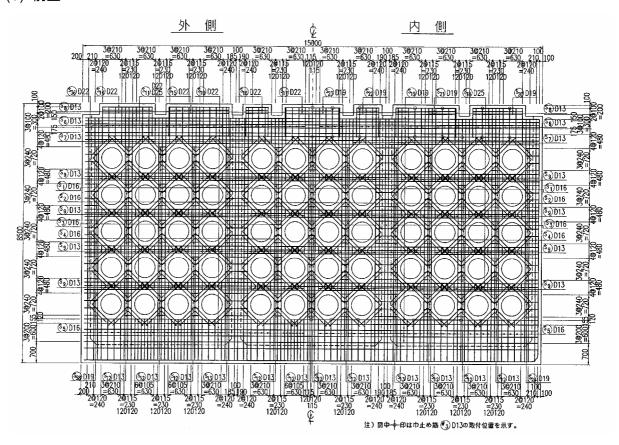
# 3.8 図面の作成


配筋計算に基づいて作成した配筋図を以下に示す。

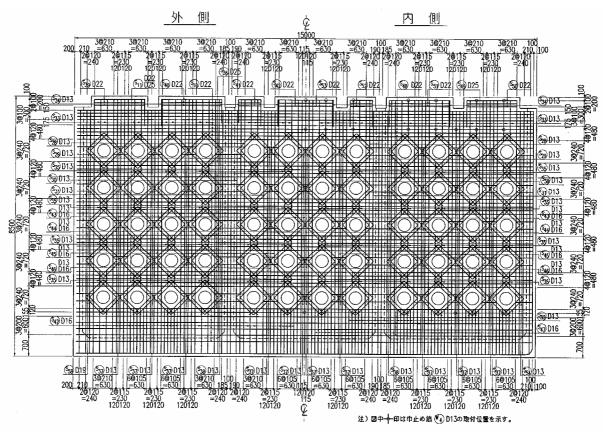
(1) 底版及びフーチング




# (2) バットレス (港外側)

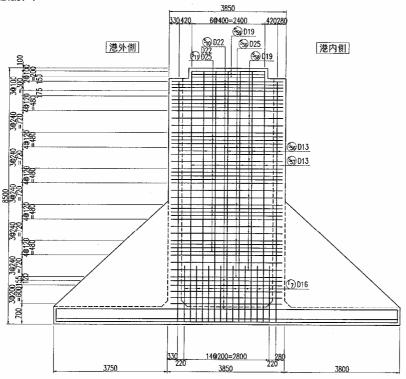

端部



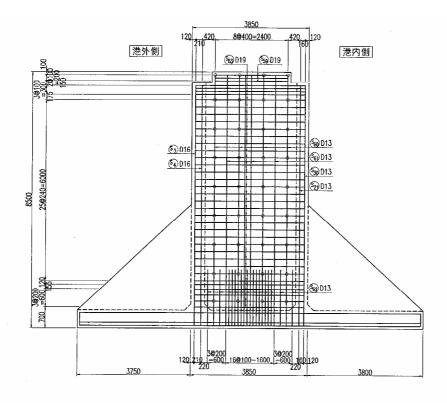

中央部



# (3) 前壁




#### (4) 後壁

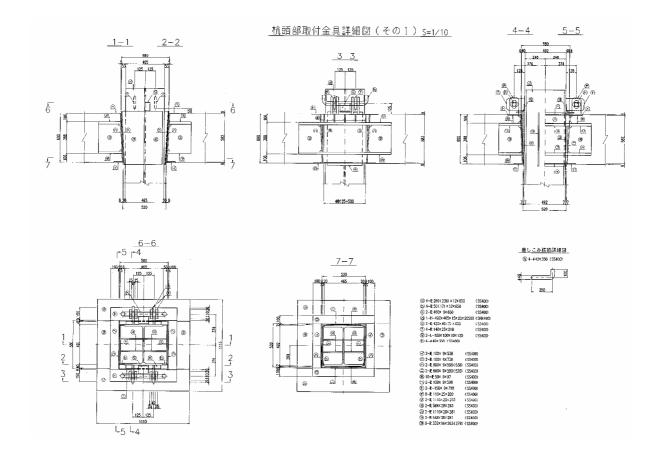


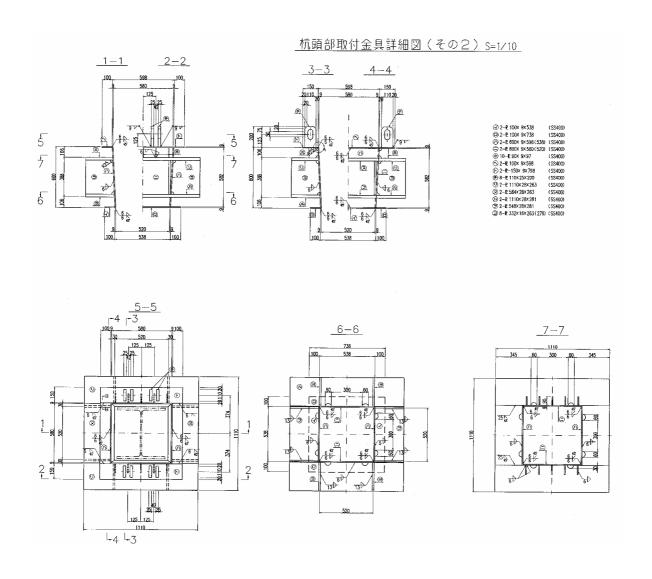

# (5) 側壁

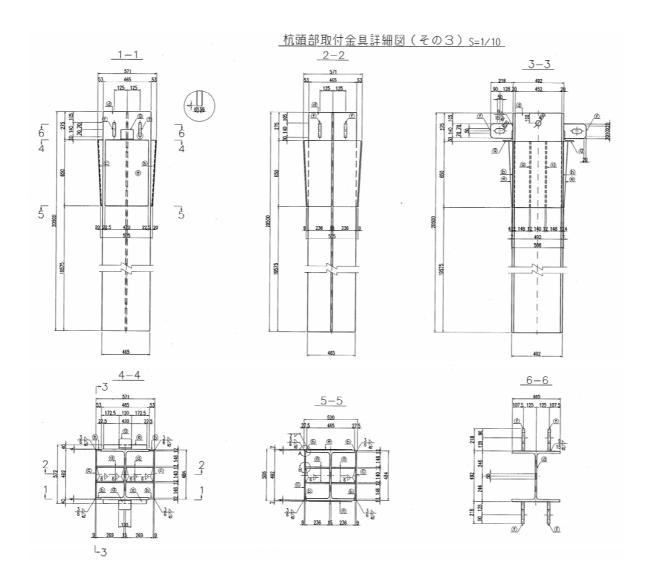
# ・外側配筋図



# ・内側配筋図





注)図中 中印は中止め筋 (5) D13の取付位置を示す。


# (6) 隔壁



# (7) 杭頭金具







# 4. 施工事例

# 4.1 一 般

軟着堤の構造形式には、平型とくし型の2種類があり、さらにこれを不透過式と透過式に分けることができる。

ここでは、くし型透過式防波堤の施工法について九州地方整備局が熊本港において施工した実施例を中心に述べる。

堤体の製作および据付の施工手順をフローで示すと以下のようになる。

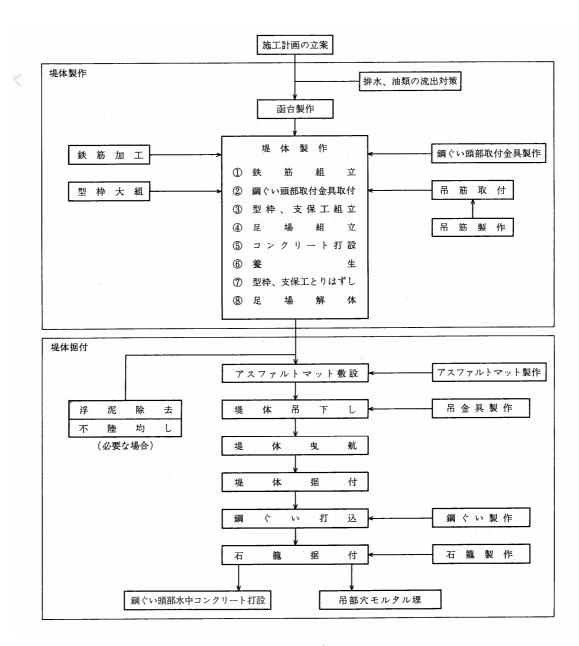



図 - 4.1.1 堤体の製作および据付の施工手順

# 4.2 堤体製作

くし型透過式防波堤の構造は図 - 4.2.1 に示すように、通常のケーソンに比べてフーチング幅が非常に広いという違いはあるが、堤体の製作については、通常のケーソン製作となんら変わるところはない。

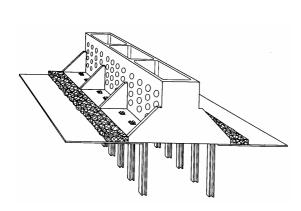



図 - 4.2.1 くし型透過式防波堤

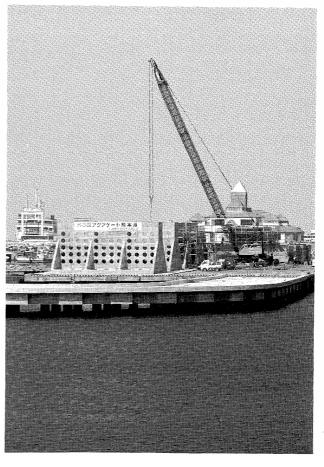



図 - 4.2.2 堤体製作ヤード全景

#### (1)製作場所の選定

堤体製作ヤードは次のような項目を考慮して選定する。

- 1)本透過式堤体は、自力浮上が困難であり、移動、運搬等にあたっては大型クレーンによる吊上げが必要となるため、工期、経済性等を考慮してできるだけ二次移動、運搬が生じないよう起重機船等で直接、接岸吊下ろしができるような製作場所を選定する。
- 2)鉄筋、型枠等の加工、仮置、さらには生コン、機械等の搬入、搬出に便利で十分な面積を有する。
- 3)荷重に耐えられる地盤で、岸壁および物揚場で製作する場合は既設構造物の安定を確認する。
- 4) 積出しの利便性が良く、海面が静穏で据付現場に出来るだけ近いこと。
- 5)ヤード全域の排水および油類の流出防止対策を考慮する。

#### (2) 堤体製作ロット割り

堤体製作は、一般に数層に分けて施工される。この一層の高さは、鉄筋組立の容易さや 一日のコンクリート打設量などで決定されるが、施工の確実性を考慮して 3m 以下とする。

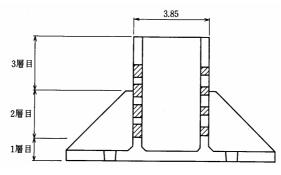



図 - 4.2.3 堤体ロット割り

## (3)函台製作

- 1)函台は通常何回も使用するので、平坦で堤体の荷重に対して十分な耐力をもつものでなくてはならない。また、吊下ろしに際して堤体底部と函台の付着力が問題となることが多いので、函台の構造と付着力は施工前に検討する必要がある。
- 2)函台の一般例は、地盤を掘削し、砕石を敷均し転圧し、コンクリート舗装を行う。舗装 天端には 敷砂を行い、防水紙やアスファルトルーフィングを敷く方法がある ベニア板 を張る。

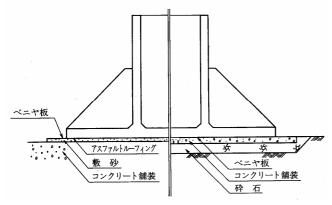



図 - 4.2.4 函台一般例

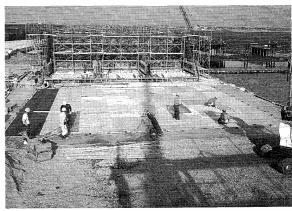



図 - 4.2.5 函台製作状況

#### 4.3 堤体据付

#### (1)据付準備

- 1)浮泥除去
  - a) 軟着堤は、地盤改良をしないで軟弱地盤上に直接堤体を据付けるものであり、海底表面 に浮泥層がある場合は、粘着力、支持力が期待できないため除去する必要がある。
  - b) 浮泥がある場合の除去方法は、低圧ジェットポンプにより吹き散らす方法、軟泥用ポンプ船により吸込む方法等があるが、在来地盤を乱さないように施工する。

#### 2)不陸均し

- a) 海底表面の不陸が大きい合には、不陸整正均しが必要である。置換による方法、敷砂による方法、その他機械により均す方法がある。
- b) 不陸整正均しにあたっては、浮泥除去と同様、在来地盤を極力乱さないよう施工する。

#### (2)堤体吊下し

- 1)吊下ろし時には、荷重が鉛直方向に均一に作用するよう、鋼製の吊枠を使用する。
- 2) 吊下ろしに先立ち、製作場所または仮置場所で吊金具および作業用足場蓋を取付ける。
- 3) 吊下ろしは大型起重機船によるが、起重機船は船体の安定を考慮してバラスト調整を行う。

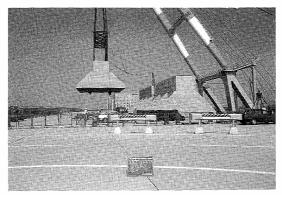
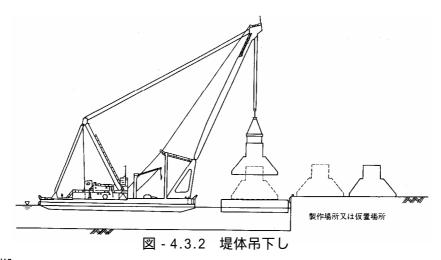




図 - 4.3.1 堤体仮置状況



#### (3)堤体運搬

- 1)運搬とは、堤体の製作場所または仮置場所から据付現場までの堤体の移動をいう。
- 2) 運搬方法は、起重機船で直接吊上げて運搬する方法と、台船に積込んで運搬する方法の2種類に大別できる。
- 3) 直吊で運搬する方法は、前引きと後引きがあるが、航路幅、水深および船舶の輻輳等安全面を考慮すると後引きが一般的である。
- 4) 台船で運搬する方法は、堤体を積込む方向に台船と直角方向および平行方向があるが、 台船の安定、吊下しおよび据付の作業方法を基に決める。
- 5) 運搬距離が長距離となる場合は、事前に運搬する航路の潮汐、波浪の予測を行うとともに、運搬中の突風、天候の急変、不測の異変に備えて、運搬船団の避難場所を予め選定する。

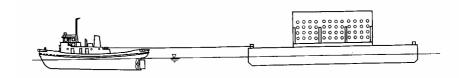



図 - 4.3.3 堤体運搬

#### (4)堤体据付

据付場所および航路の水深が浅い場合での据付作業は、時間的制約を受けるため、綿密な計画を立てる必要がある。

以下に据付順序の一例を述べる。

潮位を考慮し、作業船団を据付位置まで曳航(往)する。

台船を据付位置近くに係留し、起重機船の投錨を行う。

堤体は、起重機船にて吊下げる。

空の台船の係留を解き、仮置場所まで曳航(復)する。

堤体を据付位置まで誘導し、据付作業を行う。

通常のケーソン据付と異なる点は、据付後直ちに横方向支持杭の鋼杭を打込まなければならない。

鋼杭の打込みは、最初、底版が地盤面につく程度に吊下げておき、その状態で鋼杭を クレーン付台船で所定の位置に吊下げ、徐々に自軍で貫入する所まで垂直に建込む。

鋼杭自重による貫入が止まったところで堤体を起重機船による吊下げ状態から解放し、 鋼杭の垂直性を確かめた後、所定の深度までヤットコを装備したバイブロハンマーに て打込み、鋼杭頭部を堤体の杭頭部取付金具に潜水士で取付ける。

鋼杭の打込みは、先に四隅から行い順次内側に施工する。

堤体据付時には、堤体の動揺等による堤体どうしの接触、破損の防止策として、堤体相互間にゴムタイヤ、木材等の緩衝材を用いる。

据付作業が終わると、吊りワイヤーを撤去し、起重機船の係留を解く。

潮位を考慮し、起重機船を仮置き場所まで曳航(復)する。

仮置場所到着後、翌日据付の堤体を起重機船で台船に積込む。

鋼杭打込み完了後、鋼杭頭部を水中コンクリートで巻立てて腐食防止とする。

堤体据付完了後、吊筋の防食対策としてモルタルで穴埋めする。

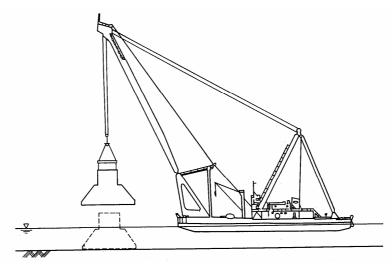



図 - 4.3.4 堤体据付

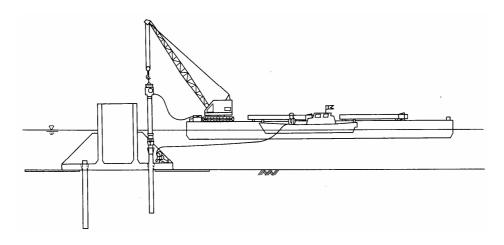



図 - 4.3.5 鋼杭打込み

# 4.4 鋼杭

## (1)鋼杭頭部取付金具製作

- 1)鋼杭頭部取付金具は、鋼杭を打ち込んだ後、堤体フーチング版に鋼杭頭部を固定するための金具であり、その構造を図に示す。
- 2)図で分かるように、鉄筋の溶接、鉄板の溶接と非常に溶接部が多いため、薄い鉄板部に溶接歪が発生することは避けられない。しかし歪が大きいと鋼杭の打込みが困難であるため、歪を最小限に抑えるように工夫して加工する。

#### (2)鋼杭製作

- 1)鋼杭はH型鋼を使用し、堤体へ固定する。杭頭部の構造は図に示すとおりである。
- 2)テーパー部は、鋼杭を打込み後、鋼杭頭部取付金具へ密着固定させるためのものであり、 H形鋼の歪(ロール誤差)等を考慮し、入念に加工する。

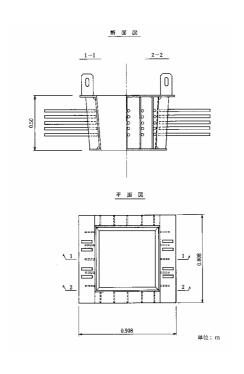



図 - 4.4.1 鋼杭頭部取付金具

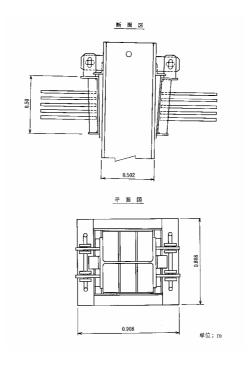



図 - 4.4.2 鋼杭頭部の取付

# 4.5 洗掘防止対策

- (1)アスファルトマット
  - 1)堤体周辺が洗掘される可能性のあるところでは、洗掘防止対策としてアスファルトマット等を敷設する。
  - 2)アスファルトマットは、厚さ3cmのものに透水材(厚さ1cm)を取り付けたものであり、 一枚の長さは堤体長、施工性を考慮し決定する。

#### (2)石籠

- 1)アスファルトマットが、波浪の影響で捲れるのを防止するため、根固め材として施工性が良く、地盤に順応できる石籠を使用する。
- 2) 石籠は、1.5m×2.0m×0.5m 程度の大きさとし、100kg/固程度の雑石を用いる。

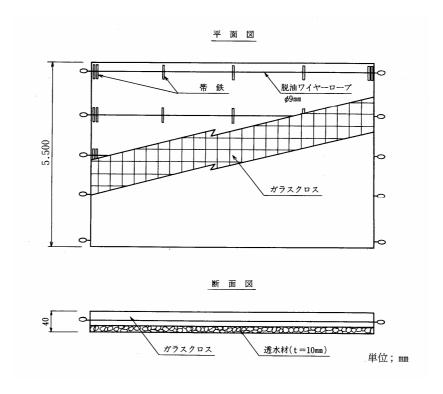



図 - 4.5.1 アスファルトマットの構造

#### 4.6 施工の歴史

施工の歴史については、過去の設計会議に基づいて、以下にまとめる。

(1)昭和62年4月

調査会議(埋没対策と軟着堤について)

- ・本件構造物は透過堤構造とし、透過部は丸孔に決定。
- (2)昭和62年9月

調査会議(軟着堤の設計方法について)

- ・堤体の基本諸元(遊水室幅3.0m、上部なし)及び基本的な設計の考え方について了承。
- (3)昭和62年12月

設計会議(設計条件及び構造タイプについて)

- ・構造タイプは、くし型。
- ・堤体重量は、500t/函程度。
- ・杭頭拘束条件は、固定。
- (4)昭和63年1月

設計会議

- ・設計区間 150m ( ~ 工区)の設計条件及び実施断面の決定、「くし型(短杭式)」。
- ・基礎地盤の液状化により堤体の変状が著しい場合は、堤体の据え直しにより対処。
- ・洗掘防止マットは、長さ5.5m、堤体内に1.5m 挿入する。
- (5)昭和63年5月

設計会議

- ・設計区間 360m ( ~ 工区)の設計条件及び実施断面の決定、「くし型(短杭)。
- (6)昭和63年12月

設計会議

- ・設計区間 540m ( ~ 工区)の設計条件及び実施断面の決定、「くし型(短杭)」。
- (7)平成2年12月

熊本港技術委員会において、「くし型(長杭式)」設計法の検討、提案。

(8)平成 4年 9月

実施断面の見直し

- ・実施区間 540m ( ~ 工区)の現地水深の変化に伴う実施断面及び工区分けの見直し。
- (9)平成6年1月

実施区間の見直し(区間長の変更)

- ・設計区間 162m ( 工区)を 212m に変更、未施工区間 50m の設計条件を 工区と同一とした。
- (10)平成6年6月

設計検討会議

- ・設計区間 225m ( ~ 工区)の設計条件及び実施断面の決定、「くし型(短杭式)。
- ・地盤変化には、敷砂(t=30cm程度)で対応。
- ・敷砂施工により揚圧力を考慮。
- ・洗掘防止マット厚5cm。
- ・ 工区は沈下量 20cm を考慮。
- (11)平成7年7月

設計検討会議

- ・設計区間は325m( 工区)の設計条件及び実施断面の決定。「くし型(短杭式)」
- ・ 工区は沈下量 50cm を考慮。
- (12)平成 10年2月

実施断面の見直し

・
工区の堤体側面の根固石かごの省略。

# (13)平成 10年 12月

#### 設計検討会議

- ・設計区間 270m ( 工区)の設計条件及び実施断面の決定、「くし型(短杭式)」。
- ・ 工区は沈下量 70cm を考慮。
- ・施工水深を保持するための洗掘防止対策として、次年度堤体据付延長分までアスファルトマット 先行敷設。

#### (14)平成 14年3月

#### 設計検討会議

- ・設計区間約 60m ( 1 及び 工区)の設計条件及び実施断面の決定、「くし型(短 杭式)」。
- 1 、 工区は沈下量 90cm を考慮。
- ・新基準対応として、H鋼杭の防食対策を「腐食代」から「電気防食(流電陽極方式)」に 変更。

# (15)平成 15年2月

軟着堤の高度化に関する検討委員会において、新設計法取りまとめ。構造タイプは、「くし型 (長杭式)」